Current Location:home > Detailed Browse

Article Detail

Upper bounds for Z$_1$-eigenvalues of generalized Hilbert tensors

Submit Time: 2017-12-12
Author: 孟娟 河南师范大学 ; 宋义生 河南师范大学 ;
Institute: 1.河南师范大学;


In this paper, we introduce the concept of Z$_1$-eigenvalue to infinite dimensional generalized Hilbert tensors (hypermatrix) $\mathcal{H}_\lambda^{\infty}=(\mathcal{H}_{i_{1}i_{2}\cdots i_{m}})$, $$ \mathcal{H}_{i_{1}i_{2}\cdots i_{m}}=\frac{1}{i_{1}+i_{2}+\cdots i_{m}+\lambda},\ \lambda\in \mathbb{R}\setminus\mathbb{Z}^-;\ i_{1},i_{2},\cdots,i_{m}=0,1,2,\cdots,n,\cdots, $$ and proved that its $Z_1$-spectral radius is not larger than $\pi$ for $\lambda>\frac{1}{2}$, and is at most $\frac{\pi}{\sin{\lambda\pi}}$ for $\frac{1}{2}\geq \lambda>0$. Besides, the upper bound of $Z_1$-spectral radius of an $m$th-order $n$-dimensional generalized Hilbert tensor $\mathcal{H}_\lambda^n$ is obtained also, and such a bound only depends on $n$ and $\lambda$.
Download Comment Hits:6624 Downloads:1465
From: 宋义生
Recommended references: 孟娟,宋义生.(2017).Upper bounds for Z$_1$-eigenvalues of generalized Hilbert tensors.[ChinaXiv:201712.02142] (Click&Copy)
Version History
[V1] 2017-12-12 19:56:18 chinaXiv:201712.02142V1 Download
Related Paper


Current Browse

Change Subject Browse

Cross Subject Browse

  • - NO