Precision reducer is one of the key parts of an industrial robot, which generally incorporates cycloidal planetary drive. Engagement of the cycloidal wheel and the pins causes rolling friction between the wheel and the pins as well as sliding friction between the pins and the pin housing in the traditional cycloidal transmission of the reducer. In this paper, we present a new kind of design to make the pins and the pin housing a whole structure, thereby the cost of manufacturing and assembly can be significantly reduced. And in this new structure, we only need to consider sliding friction between the cycloidal wheel and the unibody of the pins and pin housing. The difference between the new structure and the conventional structure in the meshing properties was given. In addition, we used finite element method to analyze the friction and contact stress between the cycloidal wheel and the pins in the actual working condition, and compared it with the traditional structure. The simulation results proved the feasibility of the new structure and provided a theoretical basis for further design and manufacturing of this new kind of cycloidal planetary drive structure. |
Version History | ||||
---|---|---|---|---|
[V1] | 2018-03-14 16:47:38 | chinaXiv:201803.00572V1 | Download |
Related Paper |
---|