Current Location:home > Detailed Browse

Article Detail

基于统计学特征的android恶意应用检测方法

Abstracts

针对Android恶意应用检测中忽略特征统计学意义的问题,提出一种基于统计学特征的Android恶意应用检测方法。该方法提取应用统计学特征作为训练数据集,并采用聚类算法预处理恶意数据集以降低个体差异性对实验结果的影响。另一方面,该方法结合特征和多种机器学习算法(如线性回归、神经网络等)建立了检测模型。该方法提出的两个模型准确率均能达到95%以上,检测时间相比于对比实验也能大幅度降低。实验结果表明,应用的统计学特征能够很好地区分良性和恶意应用,并且通过聚类算法预处理数据能够提高检测精度。
Download Comment From cooperative journals:《计算机应用研究》 Hits:802 Downloads:455
Journal:计算机应用研究
Recommended references: 冷波,李建彬.(2018).基于统计学特征的android恶意应用检测方法.计算机应用研究.[ChinaXiv:201805.00451] (Click&Copy)
Version History
[V1] 2018-05-24 21:08:13 chinaXiv:201805.00451V1 Download
Related Paper

Download

Current Browse

Cross Subject Browse

  • - NO