

An Iterative Local Search Based hybrid algorithm for the service area

problem

Yunfeng Konga,b
a Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions,

Ministry of Education, Henan University, Kaifang, China;
b College of Environment and Planning, Henan University, Kaifang, China.

Abstract: This article presents a hybrid algorithm for the service area

problem. The design of service areas is one of the essential issues in

providing efficient services in both the public and private sectors. For a

geographical region with a number of small spatial units, the service area

problem is to assign the service-demand units to the service-supply units

such that each facility has a service area. The basic criteria for the service

areas are the highest service accessibility, the contiguous service areas, and

that the service demand does not exceed the service supply in each service

area. A hybrid algorithm for the service area problem is proposed by

extending iterative local search (ILS) algorithm with three schemes:

population-based ILS, variable neighborhood descent (VND) search, and set

partitioning. The performance of the algorithm was tested using 60 well-

designed instances. Experimentation showed that the instances could be

solved effectively and efficiently. The solutions found by the hybrid

algorithm approximate optimal solutions or the lower bounds with an

average gap of 0.15%.

Keywords: service area problem; hybrid algorithm; local search; set

partitioning

1. Introduction

This article deals with the service area problem (SAP). The design of service areas is one of

the essential issues in providing efficient services in both the public and private sectors

(Daskin 2011). The delineation of service areas for schools (Ferland and Guenette 1990;

Schoepfle and Church 1991; Caro et al. 2014), hospitals and healthcare centers (Pezzella et

al. 1981; Jacobs et al. 1996; Emiliano et al. 2017; Hu et al. 2018), disaster shelters (Li et al.

2008; Hu et al. 2014), green energy resources (Yanik et al. 2016) and many other facilities

can be generalized as a contiguity-constrained capacitated facility SAP. For a geographic

area with small spatial units, the SAP should assign the service-demand units to service-

supply units such that each facility has a service area and some criteria are satisfied. The

basic criteria for the design of service areas are the highest service accessibility, the

ch
in

aX
iv

:2
02

10
5.

00
06

8v
1

2

contiguous service areas, and that the service demand does not exceed the service supply

in each service area. Service accessibility can be evaluated by total travel distance from

demand units to their supply units. The shortest travel distance is usually preferred when

using the service. Contiguous service area is also a necessity for satisfying policy or

management purposes. In addition, the total service demand in each service area should

be no greater than its service capacity.

The SAP can be defined as a contiguity-constrained generalized assignment problem

(GAP). It aims to minimize the total travel distance when using the service while satisfying

constraints on facility capacity and service area contiguity. The GAP is known to be

nondeterministic polynomial time hard (NP-hard). The constraints on spatial contiguity

also pose great obstacles in modeling and solving the geographic problems (Duque et al.

2011). Consequently, various exact and heuristic methods have been proposed for solving

the SAP.

Mixed integer linear programming (MILP) has been widely utilized to solve the

districting problems. Owing to the computational complexity of the districting problems,

many of the MILP models developed since the 1960s were simplified by ignoring some

districting constraints such as district contiguity and unit integrity. The model solutions

must be adjusted by repairing split units and fragmented districts. Such methods have

been suggested for school districting (Koenigsberg 1968; Franklin and Koenigsberg 1973;

Caro et al. 2004), political districting (Hess et al. 1965; Hojati 1996; George et al. 1997; Li

et al. 2007), and the territory design problem (Kalcsics et al. 2005). Modeling and repairing

approaches could be adapted to solving the SAP. However, in case of a spatial mismatch

between service demands and supplies in a geographic region, it may be difficult to find

satisfactory solutions.

The second class of MILP models have considered district contiguity. Three types of

formulations on district contiguity—tree-based, order-based, and flow-based—can be

embedded into an assignment model or a location-allocation model for solving districting

problems (Shirabe 2005; Duque et al. 2011). Nemoto and Hotta (2003) proposed a MILP

model for political districting. The model considers district contiguity, but it does not

guarantee the compactness of the districts. Salazar-Aguilar et al. (2011) proposed a bi-

objective model for designing commercial territories. Constraints such as balance of sales

volume and district contiguity are formulated in the model. However, four hours of

computation time were used to solve the problem instances with 150 units and 6

territories. Plane et al. (2019) proposed a minimum inter-person separation model for

political districting. For instances with 6×6 grids can be solved optimally or near-optimally

in 6.30-53,632.22 seconds. Kong et al. (2019) formulated a center-based allocation model

with flow-based constraints on district contiguity to solve the districting problem. Given

ch
in

aX
iv

:2
02

10
5.

00
06

8v
1

3

district centers from a K-medoids algorithm, the districting instances could be solved

efficiently. Since the service-supply units are already provided in the SAP, the model could

be modified to solve the problem.

The third exact approach has been suggested based on the set partitioning problem

(SPP). Given a large number of feasible districts generated by the construction or heuristic

methods, the SPP model attempts to select an optimal set of districts from the candidate

districts as a districting solution (Garfinkel and Nemhauser 1970; Nygreen 1988; Mehrotra

et al. 1998). Solutions from the problem instances indicate that the SPP model for the

small-sized instances can be solved exactly. The model results also seem to be satisfactory

for large problems. To obtain satisfying solutions, they suggested different techniques to

generate promising candidate districts. Kong et al. (2017) proposed an iterated local

search algorithm with set partitioning to solve the school districting problem. The SPP

model could choose a much better solution from the historical districts identified by the

local search. However, the algorithm was not fully tested on general SAP instances.

Local-search-based and population-based heuristics are the mainstream methods

used for solving the SAP. Starting from an initial solution, the local-search based

algorithms, such as greedy search, simulated annulling, tabu search, old bachelor

acceptance search, and the greedy randomized adaptive search procedure (GRASP), could

iteratively improve the incumbent solution using neighborhood search (Li et al. 2008; Ricca

and Simeone 2008; Rios-Mercado and Fernandez 2009). The neighborhood space of the

incumbent solution is explored by one or several search operators, and the incumbent

solution is updated according to the acceptance criteria adopted in a specific algorithm.

The one-unit shift is a widely used operator that moves a boundary unit to its neighboring

district while maintaining the connectivity of its original district (Tavares-Pereira et al.

2007; Ricca and Simeone 2008; Xiao 2008; Li et al. 2008; Liberatore and Camachocollados

2016). Butsch et al. (2014) introduced three operators for districting problems: shift,

double shift, and swap. Kong et al. (2017) suggested much more complicated local search

operators for school districting. However, algorithms with expensive local search

operators have not fully tested in the existing literature.

Population-based heuristics have become popular for solving districting problems in

recent literature. The evolutionary algorithms (Forman and Yue 2003; Bergey et al. 2003;

Bacao et al. 2005; Tavarespereira et al. 2007; Chou et al. 2007; Tavares-Pereira et al. 2007;

Xiao 2008; Chou 2011; Hu et al. 2014; Liu et al. 2016) maintain and improve multiple

candidate solutions using mechanisms such as crossover, mutation, and selection. The

crossover operation for districting problems is usually implemented by overlaying two

individuals and then repairing the fragmented overlaid areas (Chou et al. 2007; Datta et al.

2008; Xiao 2008; Liu et al. 2016). The mutation operation usually moves every boundary

ch
in

aX
iv

:2
02

10
5.

00
06

8v
1

4

unit to its neighboring districts with a small mutation possibility. To increase the speed of

the algorithm convergence and the solution quality, Tavarespereira et al. (2007) proposed

an evolutionary algorithm with local search for the districting problem. The population

diversity in evolutionary algorithms and the search intensity in local search heuristics are

balanced in the hybrid algorithm. In addition, nature-inspired metaheuristics such as

scatter search (Salazar-Aguilar et al. 2012) and artificial bee colony (Rincón-García et al.

2015) have also been applied to solve districting problems.

These are some limitations to the solution methods for the districting problems. First,

the existing algorithms are capable of solving artificial or real problem instances; however,

the performance of the algorithms has not been sufficiently tested on benchmark

instances, so the optimality of solutions from the algorithms is still unknown. Second,

some innovative ideas in operations research, such as hybrid metaheuristics,

matheuristics, learning-based adaptive algorithms, and hyper-heuristics, have not been

adequately utilized for solving the districting problems. Third, some studies report that

districting problems are difficult to directly solve using exact methods. However, along

with progress in MILP, especially the embedded heuristics in mixed-integer programming

(MIP) optimizers, state-of-the-art MIP solvers could solve increasingly difficult problems

(Lodi 2017). Designing new algorithms based on the framework of modern MIP solvers

may be a promising approach to the districting problems.

This article presents a hybrid algorithm for the SAP. It was proposed by extending

iterative local search (ILS) algorithm with three schemes: population-based ILS, variable

neighborhood descent (VND) search, and set partitioning. The algorithm was tested using

60 well-designed problem instances. The effectiveness and efficiency of the proposed

hybrid algorithm for the SAP were verified using the problem instances. Compared with

exact solutions, the solutions from the hybrid algorithm approximate optimal or the lower

bounds with an average gap of 0.15%. To the best of authors’ knowledge, it is the first

time to introduce a population-based ILS with VND search and set partitioning for the SAP.

2. Problem formulation

For a geographic area, let V = {1, 2 … n} be a set of n small units. Each unit i has service

demand pi. Let S = {s1, s2 … sK} (𝑆 ⊂ 𝑉) be a set of K service-supply units, and each unit sk

has service capacity qk. Let dik be the distance between demand unit i and supply unit k.

Let 𝑎 indicate whether units i and j share a border and Ni be a set of units that are

adjacent to unit i (𝑁 = {𝑗|𝑎 = 1}).

A MILP model can be formulated by defining the SAP as a contiguity-constrained

GAP. The contiguity of service areas can be ensured by a network flow model (Shirabe

2005; Duque et al. 2011). Let 𝑥 ∈ {0,1} denote whether unit i is assigned to supply unit

ch
in

aX
iv

:2
02

10
5.

00
06

8v
1

5

sk, 𝐻 (𝐻 ≥ 0) be the service overload of supply unit sk, and 𝑓 𝑓 ≥ 0 be the

flow from unit i to unit j in service area k. The model for the SAP is formulated as follows:

Minimize 𝛼 ∑ 𝐻∈ + ∑ ∑ 𝑝 𝑑 𝑥∈∈ (1)

Subject to: ∑ 𝑥∈ = 1, ∀𝑖 ∈ 𝑉 (2)

 ∑ 𝑝 𝑥∈ ≤ 𝑞 + 𝐻 , ∀𝑘 ∈ 𝑆 (3)

 𝑓 ≤ (𝑛 − 𝐾)𝑥 , ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑁 , ∀𝑘 ∈ 𝑆 (4)

 𝑓 ≤ (𝑛 − 𝐾)𝑥 , ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑁 , ∀𝑘 ∈ 𝑆 (5)

 ∑ 𝑓∈ − ∑ 𝑓∈ ≥ 𝑥 , ∀𝑖 ∈ 𝑉\𝑆, ∀𝑘 ∈ 𝑆 (6)

 𝑥 = {0,1}, ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝑆 (7)

 𝑓 , 𝐻 ≥ 0, ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑁 , 𝑘 ∈ 𝑆 (8)

The objective function (1) is to minimize the total travel distance from service

demand units to their supply units. It also penalizes service overloads by using a large

enough coefficient 𝛼. Constraints (2) confirm that each unit i is assigned to only one

service-supply unit. Constraints (3) are soft constraints on service capacities. Constraints

(4), (5), and (6) are the flow-based formulations on contiguity, which are rewritten

formulations in Duque et al. (2011). For two adjacent units i and j, if both of them are

assigned to service-supply unit sk (xik=1 and xjk=1), there might be a flow from unit i to j in

basin k (𝑓 ≥ 0); otherwise, these is no any flow between them (𝑓 = 0). This is

confirmed by constraints (4) and (5). Constraints (6) ensure that one unit of flow must be

created at non-service-supply unit i if it is assigned to service-supply unit sk. Constraints

(4), (5) and (6) enforce all the flows created in service area of k must run to the sink unit k.

Constraints (7) and (8) impose restrictions on decision variables. Note that the soft

constraints (3) on facility capacities are used in the model. The service overloads (Hk) in the

constraints are penalized by the objective function. There are two advantages of using soft

constraints. First, the soft constraints could help the MIP optimizer to find a feasible

solution efficiently and guide the search toward preferred solutions. Second, using hard

capacity constraints, there is no feasible solution for some instances, e.g. the total demand

is greater than the total supply, or both the assignment constraints and capacity

constraints cannot be satisfied. Such infeasible instances can be handled by the soft

constraints.

3. A hybrid algorithm

3.1 Iterative local search

A hybrid algorithm for the SAP was proposed based on ILS algorithm. ILS is a simple, easy

to implement, and quite effective metaheuristic for discrete optimization problems

(Lourenço et al. 2010). ILS starts from an initial solution and iteratively improves the

ch
in

aX
iv

:2
02

10
5.

00
06

8v
1

6

solution by local search and perturbation. Local search heuristic is used to intensively

explore the solution space. However, the iterative search may easily get trapped in local

optima that are far away from the global optimum. ILS escapes from local optima by

applying perturbations to the current local minimum. The basic ILS procedure is illustrated

in Algorithm 1.

Algorithm 1: Iterated local search
1. s0 = GenerateInitialSolution();
2. s = LocalSearch(s0);
3. Repeat until termination condition met:
4. s′ = Perturbation(s);
5. s∗ = LocalSearch(s’);
6. If f(s∗) <f(s): s = s∗;
7. Output s.

3.2 Initial solution

The transportation problem (TP) model as follows was used to generate initial solutions.

The model assigns the demand in each unit to one or multiple supply units with minimum

traveling cost. The TP can be easily solved by a MIP solver owing to its bipartite structure.

The small random coefficients 𝜖 (|𝜖 | < 0.02) are used in the objective function to

obtain a random solution.

Minimize ∑ ∑ (1 + 𝜖)𝑝 𝑑 𝑥∈∈ (9)

Subject to: ∑ 𝑥∈ = 1, ∀𝑖 ∈ 𝑉 (10)

 ∑ 𝑝 𝑥∈ ≤ 𝑞 , ∀𝑘 ∈ 𝑆 (11)

 𝑥 = [0,1], ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝑆 (12)

 The solution from the TP model needs to be repaired. First, some units in a solution

may be split into two or more parts. For each split unit, the algorithm assigns it to a service

area according to the largest portion of split. Second, some service areas in a solution may

be non-contiguous. The non-contiguous areas can be repaired by deleting the fragmented

units and then reassigning them to their neighboring areas. Note that the solution from

region growth may violate the constraints on service capacities. The infeasible solutions

are allowed in the algorithm. However, a solution with service overloads will be penalized

in the following local search by the objective function (1) and tend to be a feasible

solution.

3.3 Local search

The design of local search operators in optimization algorithm is critical for repeatedly

improving the incumbent solution. The one-unit shift is a widely used operator that moves

a boundary unit to its neighboring district while maintaining the connectivity of its original

district (Tavares-Pereira et al. 2007; Ricca and Simeone 2008; Xiao 2008; Li et al. 2008;

ch
in

aX
iv

:2
02

10
5.

00
06

8v
1

7

Liberatore and Camachocollados 2016). Butsch et al. (2014) introduced three operators for

districting problems: shift, double shift, and swap.

Two local search operators are used in the algorithm to improve the solutions. The

operators attempted to move one or more units located on the boundary to their

neighboring service areas. Note that only the feasible moves are allowed, because when

moving a boundary unit from its original area to a destination area, the original area may

be non-contiguous. The one-unit shift and two-unit shift are illustrated in Figure 1.

0 1 1 2 2 3 0 1 1 2 3 3

0 1 1 2 3 3 0 1 1 2 3 3

0 0 1 2 3 3 0 0 1 2 3 3

One-unit shift

0 1 1 2 2 3 0 1 2 2 2 3

0 1 1 2 3 3 0 1 1 2 3 3

0 0 1 2 3 3 0 1 1 2 3 3

Two-unit shift

Figure 1: Examples of the local search operators

The one-unit shift moves boundary unit i to one of its neighboring area k as outlined

in Algorithm 2. In the algorithm, all the boundary units are selected and then shuffled

randomly. For each boundary unit i, the algorithm tries to move the boundary unit from its

original area to one of its neighboring areas. The move is accepted in cases that the

original area is connective, and the new solution is better than the incumbent solution.

Algorithm 2: one-unit shift
1. ulist=BoundaryUnits(s);
2. ulist=Shuffle(ulist);
3. For i in ulist:
4. For k in NeighboringAreas(i):
5. s* = Move(s, i, k);
6. If Area(i) is contiguous and f(s*)<f(s):
7. s=s*;
8. Return s*.

The two-unit shift moves boundary unit i to one of its neighboring areas k, and at the

same time moves boundary unit j in area k to one of its neighboring areas (Algorithm 3). In

other words, one unit is moved into area k, and another unit in area k is moved out.

Differing from the one-unit shift that involves two areas, a two-unit shift usually involves

three areas. Swapping two units between two adjacent areas is a special case that involves

two areas.

Algorithm 3: two-unit shift
1. ulist=BoundaryUnits(s);
2. ulist=Shuffle(ulist);

ch
in

aX
iv

:2
02

10
5.

00
06

8v
1

8

3. For i in ulist:
4. For j in ulist:
5. If Area(i) and Area(j) are not adjacent: continue;
6. For k in NeighboringAreas(j):
7. s* = Move(s, i, j, k);
8. If Area(i) or Area(j) is non-contiguous: continue;
9. If f(s*)<f(s): s= s*;
10. Return s.

The two local search operators have different search space and computational

complexity: O(Kn) and O(Kn2). However, the number of possible moves is generally much

fewer, because only the boundary units can be moved to their neighboring areas, and

there are only a few neighboring areas available for a boundary unit.

3.4 Perturbation

Perturbation is one of the key components of ILS algorithm. Using local search operators,

the solution may easily reach to local optima. A ruin and recreate procedure is useful to

perturb the SAP solution from local optima. There are multiple methods to ruin the

solution such as deleting some boundary units, deleting all the units in some areas, and

deleting some units in a connective region. Then, the deleted units can be reassigned to

their nearest facilities. The second perturbation method is to move some boundary units

to their neighboring areas. A repair procedure on the new solution is usually necessary

since some areas in the perturbed solution may be non-contiguous. On the other hand,

the objective of perturbed solution may become worse. However, the following local

search could improve the solution quality significantly.

The strength of perturbation is critical for ILS algorithm. A very strong perturbation

tends to generate a much worse solution, such that better solutions will be found with a

very low probability. On the other hand, for a very small perturbation, the solution will

often back to its original state of local optimum by the following local search. An

appropriate strength of perturbation will maintain the diversification of ILS search, and

thus benefits to find better solutions.

Four perturbation schemes are randomly used in our ILS algorithm: ruin boundary

units and recreate, ruin service areas and recreate, ruin a connective region and recreate,

and move boundary units to their neighboring areas. Let strength be the strength of

perturbation, i.e. a percentage of the solution components, for example, strength% of

boundary units, strength% of service areas, or strength% of all units. In all perturbation

schemes, the perturbed units/areas are randomly selected.

ch
in

aX
iv

:2
02

10
5.

00
06

8v
1

9

3.5 Set partitioning

Let Ω denote the set of historical service areas identified in ILS algorithm. Each area i has

an objective ci and a set of units Ui in the area. Let subset 𝛺 = {𝑖|𝑖 ∈ 𝛺, 𝑗 ∈ 𝑈 }, the SPP

model (13)-(15) could be used to select a subset service areas of Ω, which gives a minimal

objective and also covers all the units in set V. The decision variable 𝑥 indicates whether

the candidate area i is selected.

Minimize ∑ 𝑐 𝑥∈ (13)

Subject to: ∑ 𝑥∈ = 1, ∀𝑗 ∈ 𝑉 (14)

 𝑥 ∈ {0,1}, ∀𝑖 ∈ 𝛺 (15)

The set partitioning could be added to ILS algorithm as a post procedure aiming to

improve the SAP solution. The SPP is known to be NP-hard; however, existing MIP

optimizers could solve the SPP instances with considerable sizes of Ω and V.

3.6 Contiguity of service areas

To keep the contiguity of service areas in SAP solutions, several algorithms are frequently

used in local search and perturbation. The first algorithm is to check the connectivity of a

service area. If a spanning tree can be established using all the units in an area, the area is

connective (Liu et al. 2016). The second algorithm is to find the fragmented units in a

solution. The spanning tree method can also identify the fragmented units. For each

service area, a spanning tree is gradually constructed from the supply unit. If some units

cannot be assigned to the tree, they are the fragmented units. The third algorithm is to

repair a solution with non-contiguous service areas. The fragmented service areas are

repaired by deleting the fragmented units and then gradually reassigning them to their

neighboring areas.

3.7 A hybrid algorithm

We introduced a hybrid algorithm based on ILS to solve the SAP. The standard ILS

algorithm was enhanced by three schemes: population-based search, variable

neighborhood descent (VND) search, and set partitioning. The proposed algorithm is

outlined in Algorithm 4.

Algorithm 4: Hybrid algorithm for SAP
Parameters: population size (psize), minimum dissimilarity between any two solutions
(mindiff), perturbation strength (strength), number of consecutive loops that the best
solution is not updated (mloops), time limit for set partitioning (t).
1. P = GenerateInitialSolutions (psize); (Section 3.2);
2. pool=null;
3. sbest=Best(P);

ch
in

aX
iv

:2
02

10
5.

00
06

8v
1

10

4. notImprove=0;
5. While notImprove < mloops:
6. Select a solution s from P randomly;
7. s′=Perturbation (s, strength); (Section 3.4);
8. s*=VNDsearch(s′);
9. If f(s*)<f(sbest): sbest=s*, notImprove=0;
10. else: notImprove+=1;
11. pool =UpdateServiceAreaPool (pool, s*);
12. P =UpdatePopulation (P, s*, mindiff);
13. s=SetPartitioning (pool, t); (Section 3.5);
14. Output s.

The hybrid algorithm maintains a number of candidate solutions. It is a population-

based algorithm rather than the standard single solution-based ILS algorithm. The

diversification of ILS search is guaranteed by the perturbation scheme. However, it is

usually difficult to select a strength parameter for solution perturbation. Furthermore, the

best perturbation strength for an instance might depend on the perturbation scheme and

the attributes of the instance. The population-based extension of ILS may enhance the

diversification of local search. A number of elite and diverse solutions are selected by the

algorithm. In step 12, the population is updated according to the solution objectives and

the similarities among the solutions. To maintain solution diversity, only elitist and

dissimilar solutions are selected to be the new population. The updated population should

be dissimilar. For any two solutions, their dissimilarity can be defined as the percentage of

the demand units that are assigned to different facilities. Based on this definition, a

dissimilar population means that the dissimilarity between any two solutions in the

population is greater than a minimum dissimilarity. This percentage can be predefined as

an algorithm parameter (mindiff). In some cases, the size of the new population may be

smaller than the parameter popsize; however, the following process of perturbation could

generate new dissimilar solutions.

The second scheme is to use VND local search instead of simple local search in ILS. A

simple local search is to improve the solution by performing one-unit shift and two-unit

shift respectively. VND is repeatedly exploring different neighborhood structures by

deterministic change of neighborhoods until the solution cannot be improvement. Using

VND search, ILS algorithm can easily find solutions in local optimum, and then moves the

solution to new search point by perturbation.

The third scheme is to improve ILS solution by set partitioning. In each ILS loop, all the

service areas in solution s* are recorded in the list pool. Each areal record includes the

units in the service area and its objective value. At the end of ILS, thousands or more areas

will be recorded in the pool. A SPP model (Section 3.5) could be used to select a better

solution from the candidate service areas.

ch
in

aX
iv

:2
02

10
5.

00
06

8v
1

11

4. Experiment

4.1 Experiment settings

Three study areas, ZY, GY, and GY2 in Kong et al. (2019), were adapted for delineating

the service areas. There are 324, 297 and 1276 spatial units in the study areas,

respectively. Figure 2 shows the spatial units and the service demand in each unit.

ZY

GY GY2

Figure 2: The spatial units in areas ZY, GY and GY2 (Kong et al. 2019). The grey circles

indicate the size of the service demand in each unit.

Using the three study areas, 60 instances for the SAP were prepared to test the hybrid

algorithm. For each study area, 20 instances were designed as follows. (1) 36, 44 and 24

units in the three areas were assumed to be the candidates of service-supply units with

service-supplies of 9195, 42326 and 1324763, respectively. (2) Select a number of facilities

from candidates randomly. 13-17, 37-41, and 18-22 service-supply units were selected for

the three areas, respectively. (3) Adjust the facility capacities in each instance

proportionally to ensure that the supply-demand ratio is around 1.15 and 1.03,

respectively. (4) Select a number of facilities from candidates by solving a capacitated p-

median problem, and then adjust the facility capacities with the same supply-demand

ratio in step (3).

ch
in

aX
iv

:2
02

10
5.

00
06

8v
1

12

Table 1 shows the attributes of the instances. The 20 instances for each study area

can be classified into 4 sets: random facility locations with higher supply-demand ratio (A),

p-median facility locations with higher supply-demand ratio (B), random facility locations

with lower supply-demand ratio (C), and p-median facility locations with lower supply-

demand ratio (D). As a result, the instances are diverse in terms of the number of demand

units, the number of facilities, the facility locations, the supply-demand ratio and the

average number of units served by one facility.
Table 1. Supply-demand ratios of 12 sets of instances

Area No. units Demand No. facilities Set A Set B Set C Set D
ZY 324 3873 13-17 1.15 1.15 1.03 1.03
GY 297 36,824 37-41 1.15 1.15 1.03 1.03

GY2 1276 819,812 18-22 1.15 1.15 1.03 1.03

The proposed algorithm was implemented by using the Python programming

language. The Python script were run in PyPy 6.0, a fast and compliant implementation of

the Python language (see http://pypy.org). Each instance was repeatedly solved for ten

times. Since random mechanism was used in initial solution generation, local search and

perturbation, different solutions will be obtained by repeatedly executing the algorithm.

To verify the optimality of the solutions, the instances were also solved by the MILP model

formulated in Section 2. The algorithm ran on a desktop computer with Intel Core I7-6700

CPU 3.40-GHz, 8-GB RAM and the Windows 10 operating system.

In the experiment, algorithm parameters are shown in Table 2. The coefficient 𝛼 in

objective function (1) was set to 10000. It is large enough to penalize the service overload

in some service areas. To analyze the sensitivity of the parameter settings, the instances

were also solved by changing one of the parameters. The TP model and SPP model were

solved by the IBM ILOG CPLEX Optimizer 12.6.3. Additionally, two parameters were set for

the CPLEX optimizer for solving for the SAP model: MIPGap=10-10 and Timelimit=7200

(seconds). Note that we solve the SAP model in two stages: (1) solve a transportation

problem (Section 3.2) and repair the fragmented solution; and (2) solve the SAP model

with the repaired solution as an initial solution.
Table 2. Parameters for the hybrid algorithm

Area ZY GY GY2
Population size 10 10 10
Minimum dissimilarity between any two solutions 5% 5% 5%
Perturbation strength 5% 5% 5%
Maximum number of consecutive loops that the
best solution is not updated

500 500 200

Time limit for set partitioning 50s 50s 100s

ch
in

aX
iv

:2
02

10
5.

00
06

8v
1

13

4.2 Solution results

The solutions for 60 instances are shown in Table 3. The instance name in the table

consists of the area name, the number of facilities and the type of facility configurations.

For each instance, the lower bound, upper bound, and computation time obtained from

the CPLEX optimizer are shown in columns LB, UB, and Time. The upper bounds labeled

with asterisk are optimal objectives. For each instance, there are 10 solutions obtained

from the hybrid algorithm. The best, average and worst objective gaps are shown in

columns Gapmin, Gapavg and Gapmax respectively. The gaps are calculated by the formula

(obj-LB)/LB*100%. Column Dev shows the standard devotion of the objective values.

Column Time indicates the average computation time in seconds. Note that all the

solutions are feasible in terms of capacity constraint and contiguity constraint.

Table 3. Solution results from 60 instances

Inst.

set
Instance

CPLEX Hybrid algorithm

LB UB Time/s Gapmin Gapavg Gapmax Dev Time/s

ZYA zy_13a 2582.40 2582.40* 353.69 0.01% 0.16% 0.26% 0.08% 56.16

48.44

45.94

41.73

56.33

23.40

25.10

30.66

37.10

33.58

82.50

55.01

56.54

39.18

31.94

38.04

43.18

27.47

42.52

47.96

26.87

20.32

25.52

24.55

28.13

 zy_14a 2320.96 2320.96* 105.89 0.00% 0.04% 0.18% 0.06%

 zy_15a 2125.35 2125.35* 133.53 0.00% 0.12% 0.23% 0.09%

 zy_16a 1995.61 1995.61* 54.44 0.04% 0.11% 0.17% 0.04%

 zy_17a 1972.27 1972.27* 312.98 0.01% 0.07% 0.13% 0.04%

GYA gy_37a 70172.91 70172.91* 147.39 0.00% 0.00% 0.00% 0.00%

 gy_38a 70357.88 70357.88* 219.98 0.00% 0.00% 0.00% 0.00%

 gy_39a 69942.63 69942.63* 1180.34 0.00% 0.00% 0.00% 0.00%

 gy_40a 70002.58 70002.58* 378.72 0.00% 0.00% 0.00% 0.00%

 gy_41a 69486.77 69486.77* 166.11 0.00% 0.04% 0.21% 0.07%

GY2A gy2_18a 2151429.06 2153367.10 7201.48 0.18% 0.20% 0.23% 0.02%

 gy2_19a 2032040.61 2032040.61* 263.55 0.03% 0.05% 0.06% 0.01%

 gy2_20a 1974506.43 1974506.43* 295.04 0.01% 0.02% 0.05% 0.01%

 gy2_21a 1931624.28 1931624.28* 84.78 0.00% 0.02% 0.03% 0.01%

 gy2_22a 1875355.92 1875355.92* 47.84 0.00% 0.01% 0.01% 0.00%

ZYB zy_13b 1811.21 1811.21* 107.56 0.02% 0.08% 0.15% 0.05%

 zy_14b 1731.02 1731.02* 152.00 0.00% 0.22% 0.54% 0.19%

 zy_15b 1656.53 1656.53* 78.72 0.00% 0.13% 0.51% 0.17%

 zy_16b 1647.33 1647.33* 147.52 0.00% 0.01% 0.04% 0.02%

 zy_17b 1618.93 1618.93* 153.38 0.05% 0.24% 0.85% 0.34%

GYB gy_37b 69052.55 69052.55* 154.39 0.00% 0.00% 0.00% 0.00%

 gy_38b 68989.99 68989.99* 312.53 0.00% 0.00% 0.00% 0.00%

 gy_39b 69047.82 69047.82* 162.70 0.00% 0.00% 0.00% 0.00%

 gy_40b 68677.92 68677.92* 147.28 0.00% 0.00% 0.00% 0.00%

 gy_41b 68555.13 68555.13* 196.78 0.00% 0.02% 0.15% 0.05%

ch
in

aX
iv

:2
02

10
5.

00
06

8v
1

14

GY2B gy2_18b 1953522.29 1953522.29* 222.22 0.00% 0.01% 0.02% 0.01% 33.28

32.49

37.30

44.94

32.68

60.05

66.04

76.24

51.74

57.98

51.77

55.39

55.31

53.01

68.47

105.16

105.21

113.90

89.63

98.95

55.50

52.55

60.89

45.89

56.36

52.91

49.18

55.73

57.29

52.80

67.05

55.23

105.73

104.84

71.51

 gy2_19b 1927032.00 1927032.00* 67.03 0.00% 0.01% 0.02% 0.00%

 gy2_20b 1904637.49 1904637.49* 74.10 0.00% 0.00% 0.01% 0.00%

 gy2_21b 1889743.21 1889743.21* 86.73 0.00% 0.01% 0.02% 0.01%

 gy2_22b 1875200.30 1875200.30* 59.46 0.00% 0.00% 0.01% 0.00%

ZYC zy_13c 2822.23 2822.23* 43.70 0.00% 0.19% 0.40% 0.13%

 zy_14c 2589.93 2589.93* 514.55 0.07% 0.25% 0.39% 0.13%

 zy_15c 2405.40 2405.40* 399.81 0.14% 0.36% 0.69% 0.20%

 zy_16c 2260.01 2260.01* 274.39 0.11% 0.45% 0.77% 0.20%

 zy_17c 2250.94 2250.94* 575.95 0.13% 0.23% 0.35% 0.08%

GYC gy_37c 79828.37 79924.28 7204.52 0.19% 0.29% 0.57% 0.14%

 gy_38c 79514.67 79514.67* 1112.73 0.00% 0.12% 0.69% 0.22%

 gy_39c 78748.95 78748.95* 1280.30 0.00% 0.16% 1.00% 0.32%

 gy_40c 78402.60 78402.60* 1088.69 0.00% 0.07% 0.13% 0.04%

 gy_41c 79603.48 79771.00 7203.73 0.21% 0.34% 0.74% 0.16%

GY2C gy2_18c 2316782.75 2317477.99 7204.80 0.06% 0.13% 0.18% 0.04%

 gy2_19c 2141600.45 2142243.12 7205.44 0.14% 0.18% 0.24% 0.03%

 gy2_20c 2118415.85 2119263.56 7205.84 0.08% 0.14% 0.19% 0.04%

 gy2_21c 2026852.86 2026852.86 7205.17 0.09% 0.11% 0.14% 0.02%

 gy2_22c 2003751.38 2003951.77 7204.17 0.03% 0.10% 0.16% 0.05%

ZYD zy_13d 2050.88 2050.88* 77.56 0.02% 0.04% 0.08% 0.02%

 zy_14d 1927.72 1927.72* 202.80 0.11% 0.33% 0.84% 0.27%

 zy_15d 1874.58 1874.58* 104.13 0.10% 0.27% 0.52% 0.14%

 zy_16d 1840.85 1840.85* 787.34 0.26% 0.65% 1.00% 0.26%

 zy_17d 1841.48 1841.48* 3965.80 0.73% 0.82% 0.99% 0.08%

GYD gy_37d 76744.96 76744.96* 1090.05 0.00% 0.00% 0.00% 0.00%

 gy_38d 77792.10 77792.10* 2035.78 0.00% 0.02% 0.07% 0.03%

 gy_39d 78960.76 79150.72 7206.91 0.24% 0.39% 0.67% 0.16%

 gy_40d 78321.25 78572.69 7205.88 0.32% 0.47% 0.60% 0.09%

 gy_41d 80428.82 80533.51 7205.42 0.15% 0.30% 0.49% 0.10%

GY2D gy2_18d 2016743.88 2016743.88* 6941.55 0.10% 0.13% 0.18% 0.04%

 gy2_19d 1986365.28 1986365.28* 929.58 0.06% 0.09% 0.13% 0.02%

 gy2_20d 2026789.24 2026991.94 7205.20 0.06% 0.19% 0.37% 0.08%

 gy2_21d 2016126.53 2016529.84 7208.63 0.15% 0.17% 0.21% 0.03%

 gy2_22d 2028023.26 2028631.85 7207.47 0.11% 0.13% 0.14% 0.01%

Table 3 shows that all the SAP instances can be solved optimally or near-optimally by

CPLEX optimizer. Among the model solutions, 46 are optimal and 14 are near-optimal with

MIPGap between 0.00% and 0.32%. Deferent from the early reports that only very small

districting instances could be exactly solved, some larger instances for the SAP could be

solved in our experiment. This should be attributed to the progress in MILP solver and CPU

speed, but also the soft-constrained model formulations. It is also found that the instance

complexity depends on both the instance size and the supply-demand ratio. The instances

ch
in

aX
iv

:2
02

10
5.

00
06

8v
1

15

with high supply-demand ratio (instance sets A and B) would be solved more efficiently

than those with low supply-demand ratio (instance sets C and D).

The results in Table 3 also show that the proposed hybrid algorithm is effective and

efficient. First, the solutions from the hybrid algorithm approximate to the optimal

solutions or the lower bounds with an average gap of 0.15% and ranging from 0.00% to

0.82%. Among the best solutions in column Gapmin, 28 (46.7%) are optimal. Table 4

summarizes the number of optimal solution found by CPLEX and the hybrid algorithm.

Second, the objective deviations are small, ranging from 0.00% to 0.38%. Third, all the

instances were solved by the hybrid algorithm in a reasonable computation time: averages

of 51.55, 41.35 and 68.15 seconds for areas ZY, GY and GY2, respectively.

Table 4. Number of optimal solutions found by CPLEX and the hybrid algorithm

Instance set
CPLEX Hybrid algorithm

A B C D A B C D
ZY 5 5 5 5 2 3 1 0
GY 5 5 3 2 5 5 3 2

GY2 4 5 0 2 2 5 0 0

Set partitioning in the hybrid algorithm is capable of improving the ILS solutions. The

average improvement on all instances is 0.12%. Table 5 illustrates the improvements for

each set of instances. For area GY, the instances of type C and D are significantly improved

by set partitioning: 0.60% and 0.43%, respectively. Occasionally, the ILS heuristic may be

difficult to find a feasible solution; however, the set partitioning procedure could select a

feasible solutions with high quality. The computation times for solving SP models are

shown in Table 6. The SP models for SAP instances could be solved very efficiently.

Generally, the SAP solutions could be improved by set partitioning in a short computation

time.

Table 5. Solution improvement by set partitioning

Instance set A B C D
ZY 0.04% 0.07% 0.07% 0.08%
GY 0.06% 0.04% 0.60% 0.43%

GY2 0.04% 0.00% 0.01% 0.04%
Table 6. Computation time in seconds for set partitioning

Instance set A B C D
ZY 1.53 1.06 3.33 2.60
GY 0.29 0.23 0.93 1.12

GY2 1.00 0.53 3.39 4.96

ch
in

aX
iv

:2
02

10
5.

00
06

8v
1

16

4.3 Analysis of algorithm parameters

To evaluate the sensitivity of the parameter settings, all the instances were solved by

the proposed algorithm using 9 additional sets of parameters. The solution gaps are

summarized in Table 7. Column Default shows the solution gaps from the algorithm with

parameters listed in Table 2. Other columns shows the solution gaps from the algorithm by

setting different parameters:

P1: default parameters, but set population size to 1 (psize=1);

P5: default parameters, but set population size to 5 (psize=5);

P20: default parameters, but set population size to 20 (psize=20);

R10: default parameters, but set perturbation strength to 10% (strength=10%);

R15: default parameters, but set perturbation strength to 15% (strength=15%);

OP1: default parameters, but use one-unit shift search operator only;

OP2: default parameters, but use two-unit shift search operator only;

LS: default parameters, but use simple local search in ILS loops;

RG: default parameters, but use region growth method to generate initial solutions.

Table 7. Solution gaps (%) from the Hybrid algorithm using different sets of parameters

Inst. set Default P1 P5 P20 R10 R15 OP1 OP2 LS RG
ZYA 0.10 0.25 0.15 0.21 0.16 0.23 0.77 0.22 0.29 0.16
GYA 0.01 0.02 0.00 0.00 0.00 0.02 0.14 0.00 0.00 0.00

GY2A 0.06 0.09 0.07 0.05 0.05 0.06 0.16 0.09 0.05 0.22
ZYB 0.14 0.20 0.22 0.14 0.08 0.04 0.97 0.04 0.46 0.13
GYB 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00

GY2B 0.01 0.10 0.01 0.00 0.01 0.01 0.03 0.01 0.01 0.11
ZYC 0.30 0.42 0.40 0.32 0.26 0.38 1.33 0.47 0.64 0.51
GYC 0.20 0.38 0.09 0.07 0.28 0.11 2.37 0.10 0.39 0.08

GY2C 0.13 0.34 0.30 0.14 0.17 0.16 0.53 0.33 0.18 0.77
ZYD 0.42 0.95 0.41 0.67 0.33 0.45 2.63 0.40 0.99 0.42
GYD 0.24 0.26 0.04 0.10 0.07 0.08 0.82 0.14 0.37 0.09

GY2D 0.14 0.22 0.17 0.14 0.17 0.16 0.64 0.34 0.19 0.66
Average 0.15 0.27 0.15 0.15 0.13 0.14 0.86 0.18 0.30 0.25

There are several findings from the solution results in Table 7. First, solution gaps in

columns Default, OP1 and OP2 show that the two-unit shift search operator is more

effective than the one-unit shift; and the combination of one-unit shift and two-unit shift

operators is slightly better than the two-unit shift operator. The one-unit shift is a fast

local search operator, while the two-unit shift is slower but more effective. For designing

the local search procedure in ILS, an issue is that whether it is best to have a fast operator

or an effective one. The experimentation suggest that the best choice is to use both of the

one-unit shift and two-unit shift in ILS search.

ch
in

aX
iv

:2
02

10
5.

00
06

8v
1

17

Second, solution gaps in columns Default, P1, P5 and P20 indicate that the

population-based search (Psize = 5, 10 or 20) is better than the single-solution-based

search (Psize = 1). Maintaining a population of elite and diverse solutions, local search in

ILS could explore much larger neighborhood space, and thus have more possibility to find

better solutions. It is observed that the population-based ILS performs better than the

single-solution-based ILS, and the population size is not sensitive to solution quality.

Third, other parameters have some effects on the performance of the proposed

algorithm, but are not very sensitive to the solution quality. The perturbation strength is a

key parameter to balance the intensification and diversification of ILS search. In our

algorithm, the perturbation strength between 5%~15% is appropriate for solving most

instances. For ILS local search, both the simple local search and VND search could guide

the algorithm to find good solutions. Since the VND search is capable to reach local

optimum in solution space, the ILS with VND search might be better than the ILS with

simple local search. The final solutions for the SAP slightly depend on the initial solution

method. For most instances, the procedure of solving a TP model and repairing the model

solution is the best mothed to generate initial solutions.

5 Conclusion

A new hybrid algorithm was proposed to solve the contiguity-constrained capacitated

facility SAP. To the best of the authors’ knowledge, it is the first time to introduce a

population-based ILS with VND search and set partitioning for delineating service areas.

The performance of the proposed method was intensively tested on 60 well-designed

instances. Experimentation shows that the algorithm is capable of finding high-quality

near-optimal solutions in a reasonable computation time.

The proposed hybrid algorithm is different from existing algorithms in some aspects.

The perturbation in ILS algorithm plays an important role in escaping from local optima

and an appropriate perturbation strength could guide the ILS search approaching the

global optimum. The algorithm was designed based on the standard ILS algorithm, and

further enhanced by three schemes: VND search, population-based ILS, and set

partitioning. VND search in ILS could extensively explore the neighborhood space of the

incumbent solution, and thus increases the convergence speed of ILS. The population-

based ILS maintains a set of solutions. Starting from the elite and diverse solutions, the

perturbation and local search in ILS have a higher possibility of finding better solutions.

Additionally, the service areas explored by the local search are reused for selecting a

better solution by set partitioning. In traditional set-partitioning-based heuristics, even if

different techniques are suggested to generate a large number of service areas, it is still

difficult to identify the promising candidates for large problem instances. In local-search-

ch
in

aX
iv

:2
02

10
5.

00
06

8v
1

18

based or population-based heuristics, a large number of solutions are discovered;

however, most of them are abandoned. Historical solutions in metaheuristics should be

the high-quality candidates for the set-partitioning-based approaches. In our algorithm, all

the service areas identified in each iteration were recorded and finally reselected by a SPP

model.

Twelve sets of benchmark instances with different sizes and complexity for SAP were

introduces based on three geographic areas. The instances are diverse in terms of the

number of demand units, the number of facilities, the facility locations, the supply-

demand ratio and the average number of units served by one facility. The optimal or near

optimal solutions for the instances were obtained from CPLEX optimizer. The instances

and all the solution results shown in this article can be downloaded from

https://github.com/yfkong. The authors believe that the benchmark instances are valuable

to evaluate existing and newly proposed algorithms for the SAP.

Finally, some general issues regarding the hybrid algorithm should be investigated in

further studies. The parameter settings and the adaptive adjustment of the parameters for

the algorithm remain as open issues. Both the theoretical and practical analysis on this

topic may inform the algorithm to solve a specific instance more efficiently. Considering

that districting problems have some common criteria, it could be possible to extend the

algorithm to solve other problems such as the political districting problem and location-

districting problems.

References

Bacao, F., Lobo, V., and Painho, M., 2005. Applying genetic algorithms to zone design. Soft

Computing, 9(5), 341-348.

Bergey, P. K., Ragsdale, C. T., and Hoskote, M., 2003. A Simulated Annealing Genetic

Algorithm for the Electrical Power Districting Problem. Annals of Operations Research,

121(1), 33-55.

Butsch, A., Kalcsics, J., and Laporte, G., 2014. Districting for Arc Routing. Informs Journal on

Computing, 26(4), 809-824.

Caro, F., et al., 2004. School redistricting: embedding GIS tools with integer programming.

Journal of the Operational Research Society, 55(8), 836-849.

Chou, C., Chu, Y., and Li, S., 2007. Evolutionary Strategy for Political Districting Problem

Using Genetic Algorithm. Lecture Notes in Computer Science, 4490(4), 1163-1166.

Chou, C., 2011. A Knowledge-based Evolution Algorithm approach to political districting

problem. Computer Physics Communications, 182(1), 209-212.

Daskin, M. S., 2011. Service science, Hoboken: John Wiley & Sons, 183-283.

ch
in

aX
iv

:2
02

10
5.

00
06

8v
1

19

Datta, D., et al., 2008. Graph partitioning through a multi-objective evolutionary algorithm:

a preliminary study. Proceedings of the 10th annual conference on Genetic and

evolutionary computation, 12-16 July 2008, Atlanta, 625-632.

Duque, J. C., Church, R. L., Middleton, R. S., 2011. The p-regions problem. Geographical

Analysis, 43 (1), 104-126.

Emiliano, W. M., Telhada, J., and Carvalho, M. D., 2017. Home health care logistics

planning: a review and framework. Procedia Manufacturing, 13, 948-955.

Ferland, J. A., and Guenette, G., 1990. Decision Support System for the School Districting

Problem. Operations Research, 38(1), 15-21.

Forman, S. L. and Yue, Y., 2003. Congressional districting using a TSP-based genetic

algorithm. Lecture Notes on Computer Science, 2724, 2072–2083.

Franklin, A. D. and Koenigsberg, E., 1973. Computed School Assignments in a Large District.

Operations Research, 21(2), 413-426.

Garfinkel, R. S. and Nemhauser, G. L., 1970. Optimal Political Districting by Implicit

Enumeration Techniques. Management Science, 16(8), 495-508.

George, J. A., Lamar, B.W., and Wallace, C. A., 1997. Political district determination using

large-scale network optimization. Socioeconomic Planning Science, 31(1), 11–28.

Hess, S. W., et al., 1965. Nonpartisan political redistricting by computer. Operations

Research, 13 (6), 998–1006.

Hojati, M., 1996. Optimal political districting. Computers & Operations Research, 23(12),

1147-1161.

Horn, M. E. T., 1995. Solution Techniques for Large Regional Partitioning Problems.

Geographical Analysis, 1995, 27: 230–248.

Hu, F., Yang, S., and Xu, W., 2014. A non-dominated sorting genetic algorithm for the

location and districting planning of earthquake shelters. International Journal of

Geographical Information Science, 28(7), 1482-1501.

Hu, Y., Wang, F., and Xierali, I., 2018. Automated Delineation of Hospital Service Areas and

Hospital Referral Regions by Modularity Optimization. Health Services Research, 53(1),

236-255.

Jacobs, D. A., Silan, M. N., and Clemson, B., 1996. An Analysis of Alternative Locations and

Service Areas of American Red Cross Blood Facilities. Interfaces, 26(3), 40-50.

Kalcsics, J., Nickel, S. and Schroder, M., 2005. Towards a unified territorial design

approach: applications, algorithms and GIS integration. Top, 13(1), 1-56.

Koenigsberg, E., 1968. Mathematical analysis applied to school attendance areas. Socio-

economic Planning Sciences, 1(4): 465-475.

Kong, Y., Zhu, Y., and Wang, Y., 2017. A hybrid metaheuristic algorithm for the school

districting problem. Acta Geographica Sinica, 2017, 72(2): 256-268. (in Chinese)

ch
in

aX
iv

:2
02

10
5.

00
06

8v
1

20

Kong, Y., Zhu, Y., and Wang, Y., 2019. A center-based modeling approach to solve the

districting problem, International Journal of Geographical Information Science, 33(2),

368-384.

Li, X., et al., 2008. A Decentralized and Continuity-Based Algorithm for Delineating

Capacitated Shelters’ Service Areas. Environment and Planning B: Planning and Design,

35(4), 593–608.

Li, Z., Wang, R. and Wang, Y., 2007. A quadratic programming model for political districting

problem. In: X. Zhang, L. Chen, L. Wu, et al., eds. The First International Symposium on

Optimization and Systems Biology (OSB’07), 8–10 August 2007 Beijing. Beijing: World

Publishing Corporation, 427-435.

Liberatore, F., and Camachocollados, M., 2016. A Comparison of Local Search Methods for

the Multicriteria Police Districting Problem on Graph. Mathematical Problems in

Engineering, Article ID 3690474, 13 pages,

Liu, Y., Cho, W. K., and Wang, S., 2016. PEAR: a massively parallel evolutionary

computation approach for political redistricting optimization and analysis. Swarm and

evolutionary computation, 30, 78-92.

Lodi, A., 2017. On Mixed-integer programming and its connection with data science

[online]. EPFL. Available from: http://transp-or.epfl.ch/zinal/lectures2017.php

[Accessed 5 April 2018].

Lourenço, H.R., Martin, O. and Stützle, T., 2010. Iterated Local Search: Framework and

Applications. In: Gendreau, M. and Potvin, J.Y., eds. Handbook of Metaheuristics, 2nd.

Edition. International Series in Operations Research & Management Science, Vol 146.

New York: Springer, 363-397.

Mehrotra, A., Johnson, E. L., and Nemhauser, G. L., 1998. An Optimization Based Heuristic

for Political Districting. Management Science, 44(8), 1100-1114.

Nemoto, T. and Hotta, K., 2003. Modelling and solution of the problem of optimal

electoral districting. Communications of Operations Research of Japan, 48(4), 300-306

(in Japanese).

Nygreen, B., 1988. European assembly constituencies for Wales—comparing of methods

for solving a political districting problem. Mathematical Programming, 42(1), 159-169.

Pezzella, F., Bonanno, R., and Nicoletti, B., 1981. A system approach to the optimal health-

care districting. European Journal of Operational Research, 8(2), 139-146.

Plane, D. A., Tong, D. and Lei T., 2019. Inter-person Separation: A New Objective Standard

for Evaluating the Spatial Fairness of Political Redistricting Plans. Geographical Analysis,

51, 251–279

Ricca, F. and Simeone, B., 2008. Local search algorithms for political districting. European

Journal of Operational Research, 189(3), 1409-1426.

ch
in

aX
iv

:2
02

10
5.

00
06

8v
1

21

Rincón-García E. A., et al., 2015. ABC, A Viable Algorithm for the Political Districting

Problem. In: Gil-Aluja J., et al. eds. Scientific Methods for the Treatment of Uncertainty

in Social Sciences. Advances in Intelligent Systems and Computing, 377. Cham: Springer.

Ríos-Mercado, R. Z., and Fernandez, E., 2009. A reactive GRASP for a commercial territory

design problem with multiple balancing requirements. Computers & Operations

Research, 36(3), 755-776.

Salazar-Aguilar, M. A., Ríos-Mercado, R. Z. and Gonzalez-Verlarde, J. L., 2011. A bi-

objective programming model for designing compact and balanced territories in

commercial districting. Transportation Research Part C: Emerging Technologies, 19(5),

885-895.

Salazar-Aguilar, M. A., et al., 2012. Multiobjective Scatter Search for a Commercial

Territory Design Problem. Annals of Operations Research, 199(1), 343-360.

Schoepfle, O. B. and Church, R. L., 1991. A new network representation of a "classic"

school districting problem. Socio-economic Planning Sciences, 25(3), 189-197

Shirabe, T., 2005. A model of contiguity for spatial unit allocation. Geographical Analysis,

37(1), 2-16.

Sridharan, R., 1993. A Lagrangian heuristic for the capacitated plant location problem with

single source constraints. European Journal of Operational Research, 66: 305-312

Tavarespereira, F., et al., 2007. Multiple criteria districting problems. Annals of Operations

Research, 154(1), 69-92.

Xiao, N., 2008. A Unified Conceptual Framework for Geographical Optimization Using

Evolutionary Algorithms. Annals of the Association of American Geographers, 98(4),

795-817.

Yanik, S., Surer, O., and Oztaysi, B., 2016. Designing sustainable energy regions using

genetic algorithms and location-allocation approach. Energy, 97, 161-172.

Corresponding author: Yunfeng Kong, yfkong@henu.edu.cn

Foundation Support: The National Natural Science Foundation of China, No. 41871307.

ch
in

aX
iv

:2
02

10
5.

00
06

8v
1

