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Abstract

In this paper, we introduce the concept of an m-order n-dimensional generalized
Hilbert tensor Hn = (Hi1i2···im),

Hi1i2···im =
1

i1 + i2 + · · · im −m + a
, a ∈ R \ Z−; i1, i2, · · · , im = 1, 2, · · · , n,

and show that its H-spectral radius and its Z-spectral radius are smaller than or equal
to M(a)nm−1 and M(a)n

m
2 , respectively, here M(a) is a constant only dependent on a.

Moreover, both infinite and finite dimensional generalized Hilbert tensors are positive
definite for a ≥ 1. For an m-order infinite dimensional generalized Hilbert tensor H∞
with a > 0, we prove that H∞ defines a bounded and positively (m− 1)-homogeneous
operator from l1 into lp (1 < p < ∞). The upper bounds of norm of corresponding
positively homogeneous operators are obtained.
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1 Introduction

Let R denote the set of all real numbers, and let Z be the set of all integers. We write Z−
stands for the set of all non-positive integers, i.e.,

Z− = {k ∈ Z : k ≤ 0} and Z−− = {k ∈ Z : k < 0}.

An m-order n-dimensional tensor (hypermatrix) A = (ai1···im) is a multi-array of real entries
ai1···im ∈ R, where ij ∈ In = {1, 2, · · · , n} for j ∈ Im = {1, 2, · · · ,m}. A is called a sym-
metric tensor if the entries ai1···im are invariant under any permutation of their indices.
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Qi [16, 17] introduced the concepts of eigenvalues of the higher order symmetric tensors,
and showed the existence of the eigenvalues and some applications. The concepts of real
eigenvalue was introduced by Lim [14] independently using a variational approach. Subse-
quently, many mathematical workers studied the spectral properties of various structured
tensors under different conditions. The spectral properties of nonnegative matrices had been
generalized to n-dimensional nonnegative tensors under various conditions by Chang et al.
[1, 2], He and Huang [8], He [9], He et al. [10], Li et al. [13], Qi [18], Song and Qi [21, 22],
Wang et al. [25], Yang and Yang [27, 28] and references therein.

For infinite dimensional tensors, the corresponding studies have only just begun, and
the conclusions are fewer. Song and Qi [20] introduced the concept of infinite dimensional
Hilbert tensor and showed that such a Hilbert tensor defines a bounded, continuous and
positively (m − 1)-homogeneous operator from l1 into lp (1 < p < ∞) and the norms of
corresponding positively homogeneous operators are not larger than π√

6
. They also proved

that the spectral radius and E-spectral radius of finite dimensional Hilbert tensor are small-
er than or equal to nm−1 sin π

n
and n

m
2 sin π

n
, respectively. Clearly, an m-order n-dimensional

Hilbert tensor is a Hankel tensor with v = (1, 1
2
, 1
3
, · · · , 1

nm
), introduced by Qi [19]. Also see

Chen and Qi [3], Xu [26] for more details of Hankel tensors. Hilbert tensor (hypermatrix) is
a natural extension of Hilbert matrix, which was introduced by Hilbert [7]. For more details
of Hilbert matrix, see Frazer[5] and Taussky [24] for n-dimensional Hilbert matrix, Choi [4])
and Ingham [11] for an infinite dimensional Hilbert matrix, Magnus [15] and Kato [12] for
the spectral properties of infinite dimensional Hilbert matrix.

In this paper, we study more general Hilbert tensor, which is referred to as “generalized
Hilbert tensor”. The entries of an m-order infinite dimensional generalized Hilbert tensor
H∞ = (Hi1i2···im) are defined by

Hi1i2··· ,im =
1

i1 + i2 + · · ·+ im −m+ a
, a ∈ R \ Z−, i1, i2, · · · im ∈ Z++ = −Z−−. (1.1)

The entries of an m-order n-dimensional generalized Hilbert tensor Hn = (Hi1i2···im) are to
choose i1, i2, · · · , im ∈ {1, 2, · · · , n} in (1.1). Clearly, both Hn and H∞ are symmetric and
the entries of the generalized Hilbert tensor with a ≥ 1 can be written as the integral form
as follow

Hi1i2···im =

∫ 1

0

ti1+i2+···im−m+a−1dt. (1.2)

For a vector x = (x1, x2, · · · , xn)> ∈ Rn, Hnx
m−1 is a vector with its ith component

defined by

(Hnx
m−1)i =

n∑
i2,··· ,im=1

xi2 · · ·xim
i+ i2 + · · ·+ im −m+ a

, a ∈ R \ Z−, i = 1, 2, · · · , n. (1.3)

Accordingly, Hnx
m is given by

Hnx
m = x>(Hnx

m−1) =
n∑

i1,i2,··· ,im=1

xi1xi2 · · ·xim
i1 + i2 + · · ·+ im −m+ a

, a ∈ R \ Z−. (1.4)
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Let l1 is a space consisting of all real number sequences x = (xi)
∞
i=1 satisfying

∞∑
i=1

|xii | <∞.

For a real vector x = (x1, x2, · · · , xn, xn+1, · · · ) ∈ l1, H∞xm−1 is an infinite dimensional
vector with its ith component defined by

(H∞xm−1)i =
∞∑

i2,··· ,im=1

xi2 · · ·xim
i+ i2 + · · ·+ im −m+ a

, a ∈ R \ Z−; i ∈ {1, 2, · · · , n, · · · }. (1.5)

Accordingly, H∞xm is given by

H∞xm =
∞∑

i1,i2,··· ,im=1

xi1xi2 · · · xim
i1 + i2 + · · ·+ im −m+ a

, a ∈ R \ Z−. (1.6)

Now we show that both H∞xm and H∞xm−1 are well-defined for all x ∈ l1.

Proposition 1.1. Let H∞ be an m-order infinite dimensional generalized Hilbert tensor.
Then for all x ∈ l1,

(i) H∞xm defined by (1.6) absolutely converges, i.e., |H∞xm| <∞;

(ii) H∞xm−1 is well-defined, i.e., for each positive integer i, its ith component defined by
(1.5) absolutely converges.

Proof. Let [a] denote the largest integer not exceeding a. Then for all a ∈ R \ Z−, it is
obvious that for all positive integers i1, i2, · · · , im,

min
i1,··· ,im

|i1 + i2 + · · ·+ im −m+ a| = a for a > 0.

For a < 0, there exist some positive integers i′1, i
′
2, · · · , i′m and i′′1, i

′′
2, · · · , i′′m such that

i′1 + i′2 + · · ·+ i′m −m = −[a] and i′′1 + i′′2 + · · ·+ i′′m −m = −[a]− 1,

and hence,

min
i1,··· ,im

|i1 + i2 + · · ·+ im −m+ a| = min{a− [a], 1− (a− [a])} for a < 0.

In conclusion, we have for a ∈ R \ Z−,

1

|i1 + i2 + · · ·+ im −m+ a|
≤ N(a) =

{
1
a
, a > 0;

1
min{a−[a],1+[a]−a} , a < 0.
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Then for x = (x1, x2, · · · , xn, xn+1, · · · ) ∈ l1, we obtain

|H∞xm| =

∣∣∣∣∣
∞∑

i1,i2,··· ,im=1

xi1xi2 · · ·xim
i1 + i2 + · · ·+ im −m+ a

∣∣∣∣∣
≤

∞∑
i1,i2,··· ,im=1

|xi1xi2 · · · xim|
|i1 + i2 + · · ·+ im −m+ a|

≤ N(a)
∞∑

i1,i2,··· ,im=1

|xi1||xi2 | · · · |xim |

= N(a)

(
∞∑
i=1

|xi|

)m

<∞

since
∑∞

i=1 |xi| <∞, and hence, H∞xm absolutely converges.
Similarly, for each positive integer i, we also have

|(H∞xm−1)i| =

∣∣∣∣∣
∞∑

i2,··· ,im=1

xi2 · · ·xim
i+ i2 + · · ·+ im −m+ a

∣∣∣∣∣
≤N(a)

(
∞∑
k=1

|xk|

)m−1

<∞.

So H∞xm−1 is well-defined.

In section 2, we present some concepts and basic facts which are used for late. In section
3, we first show that both infinite and finite dimensional generalized Hilbert tensors are
positive definite for a ≥ 1. Let

F∞x = (H∞xm−1)[
1

m−1
] and T∞x =

{
‖x‖2−ml1 H∞xm−1 x 6= θ

θ x = θ,
(1.7)

where θ = (0, 0, · · · , 0, · · · )>. Then we prove that both F∞ and T∞ is a bounded, continuous
and positively homogeneous operator on l1. In particular, their upper bounds with respect
to opertor norm are obtained as follows:

‖F∞‖ = sup
‖x‖l1=1

‖F∞x‖l2(m−1) ≤ K(a) and ‖T∞‖ = sup
‖x‖l1=1

‖T∞x‖l2 ≤ C(a), (1.8)

where

K(a) =


2(m−1)

√
1
a2

+ π2

6
, 0 < a < 1;

2(m−1)

√
π2

6
, a ≥ 1;

and C(a) =


√

1
a2

+ π2

6
, 0 < a < 1;

π√
6
, a ≥ 1.

For a finite dimensional generalized Hilbert tensorHn, we show that its H-spectral radius
and its Z-spectral radius are smaller than or equal to M(a)nm−1 and M(a)n

m
2 , respectively,
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where

M(a) =


1
a
, a > 0;

1
min{a−[a],1+[a]−a} , −m(n− 1) < a < 0;

1
−m(n−1)−a , a < −m(n− 1).

In particular, for a > 0, we obtain that the upper bounds of its spectral radius ρ(Hn) and
its E-spectral radius ρE(Hn), i.e.,

ρ(Hn) ≤ nm−1

a
and ρE(Hn) ≤ n

m
2

a
. (1.9)

2 Preliminaries and basic facts

Let both X and Y be two real Banach spaces with the norm ‖ · ‖X and ‖ · ‖Y , respectively,
and let T : X → Y be an operator. Then T is said to be

(i) t-homogeneous if T (λx) = λtT (x) for all λ ∈ R and all x ∈ X;

(ii) positively homogeneous if T (tx) = tT (x) for all t > 0 and all x ∈ X;

(iii) bounded if there exits a real number M > 0 such that

‖Tx‖Y ≤M‖x‖X for all x ∈ X.

For a bounded, continuous and positively homogeneous operator T : X → Y , the norm of
T may be defined as follows (see Fucik et al. [6], Song and Qi [22] for more details):

‖T‖ = sup{‖Tx‖Y : ‖x‖X = 1}. (2.1)

For 0 < p <∞, lp is a space consisting of all real number sequences x = (xi)
∞
i=1 satisfying

∞∑
i=1

|xii |p <∞. For p ≥ 1, it is well known that

‖x‖lp =

(
∞∑
i=1

|xi|p
) 1

p

is the norms defined on the sequences space lp. For p ≥ 1, it is well known that

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

is the norms defined on Rn. Moreover, the following relationship between the two different
norms is obvious,

‖x‖q ≤ ‖x‖p ≤ n
1
p
− 1

q ‖x‖q for q > p. (2.2)

Let A be an m-order n-dimensional symmetric tensor. Then a number λ is called an
eigenvalue of A if there exists a nonzero vector x such that

Axm−1 = λx[m−1]. (2.3)
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where x[m−1] = (xm−11 , xm−12 , · · ·xm−1n )>, and call x an eigenvector of A associated with the
eigenvalue λ. We call such an eigenvalue H-eigenvalue if it is real and has a real eigenvector
x, and call such a real eigenvector x an H-eigenvactor. These concepts were first introduced
by Qi [16] for the higher order symmetric tensors. Lim [14] independently introduced the
notion of eigenvalue for higher order tensors but restricted x to be a real vector and λ to be
a real number.

Qi [16] introduced another concept of tensor eigenvalue. A number µ is said to be an
E-eigenvalue of A if there exists a nonzero vector x such that

Axm−1 = µx(xTx)
m−2

2 , (2.4)

and such a nonzero vector x is called an E-eigenvector of A associated with µ. It is clear
that if x is real, then µ is also real. In this case, µ and x are called a Z-eigenvalue of A and
a Z-eigenvector of A, respectively. Qi [16, 17] extended some nice properties of symmetric
matrices to higher order symmetric tensors. The Perron-Frobenius theorem of nonnegative
matrices had been generalized to higher order nonnegative tensors under various conditions
by Chang, Pearson and Zhang [1, 2], Qi [18], Song and Qi [21, 22], Yang and Yang [27, 28]
and references therein.

3 Generalized Hilbert tensors

In this section, we mainly discuss the properties of infinite and finite dimensional generalized
Hilbert tensors. It is easy to see that both finite and infinite dimensional generalized Hilbert
tensor Hn and H∞ are symmetric but not always positive semi-definite since a ∈ R \ Z−.
Howerver, for all a > 0, both finite and infinite dimensional generalized Hilbert tensors are
positive, it follows from the definition of strictly copositive tensors that Hn and H∞ are
strictly copositive, i.e.,

Hnx
m > 0 for all nonnegative nonzero vector x ∈ Rn,

H∞xm > 0 for all nonnegative nonzero vector x ∈ l1.

The concept of strictly copositive tensors was introduced by Qi [18]. Also see Song and
Qi [23] for more details. Now, we give the positive definitiveness of such two tensors when
a ≥ 1.

3.1 Positive definitiveness

Theorem 3.1. Let m be even and a ≥ 1. Then m-order generalized Hilbert tensors H∞
and Hn are both positive definite, i.e.,

H∞xm > 0 for all nonzero vector x ∈ l1,

Hnx
m > 0 for all nonzero vector x ∈ Rn.
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Proof. For each x = (x1, x2, · · · , xn, xn+1, · · · ) ∈ l1 and t ∈ [0, 1], it is obvious that

|ti−1+
a−1
m xi| = |t|i−1+

a−1
m |xi| ≤ |xi|,

which implies that the infinite series
∞∑
i=1

ti−1+
a−1
m xi uniformly converges with respect to t ∈

[0, 1]. Then it follows from integral form of Hi1i2···im that

H∞xm =
∞∑

i2,i2,··· ,im=1

∫ 1

0

ti1+i2+···im−m+a−1xi1xi2 · · ·ximdt

=
∞∑

i1,i2,··· ,im=1

∫ 1

0

(ti1−1+
a−1
m xi1)(t

i2−1+a−1
m xi2) · · · (tim−1+

a−1
m xim)dt

=

∫ 1

0

(
∞∑
i1=1

ti1−1+
a−1
m xi1

)(
∞∑
i2=1

ti2−1+
a−1
m xi2

)
· · ·

(
∞∑

im=1

tim−1+
a−1
m xim

)
dt

=

∫ 1

0

(
∞∑
i=1

ti−1+
a−1
m xi

)m

dt ≥ 0 (m is even).

Now we show H∞xm > 0 for all nonzero vector x ∈ l1. Suppose not, then there exists a
nonzero vector x ∈ l1 such that H∞xm = 0, i.e.,∫ 1

0

(
∞∑
i=1

ti−1+
a−1
m xi

)m

dt = 0.

Since m is even,

(
∞∑
i=1

ti−1+
a−1
m xi

)m
≥ 0, and hence, by the continuity, we have

t
a−1
m

(
x1 +

(
∞∑
i=2

ti−1xi

))
=
∞∑
i=1

ti−1+
a−1
m xi = 0 for all t ∈ [0, 1].

So for all t ∈ (0, 1], we have

x1 +

(
∞∑
i=2

ti−1xi

)
= 0.

Since the polynomial x1 +

(
∞∑
i=2

ti−1xi

)
is continuous at t = 0, we see that

x1 +

(
∞∑
i=2

ti−1xi

)
= 0 for all t ∈ [0, 1].

Let t = 0. Then x1 = 0, and so,

t
a−1
m

+1

(
x2 +

∞∑
i=3

ti−2xi

)
=
∞∑
i=2

ti−1+
a−1
m xi = 0 for all t ∈ [0, 1].
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So, for all t ∈ (0, 1], we have

x2 +
∞∑
i=3

ti−2xi = 0.

Again by the continuity, we see that

x2 +
∞∑
i=3

ti−2xi = 0 for all t ∈ [0, 1].

Take t = 0, then we have x2 = 0.
By the mathematical induction, suppose x1 = x2 = · · · = xk = 0. Then we only need

show xk+1 = 0. In fact,

t
a−1
m

+k

(
xk+1 +

(
∞∑

i=k+2

ti−(k+1)xi

))
=

∞∑
i=k+1

ti−1+
a−1
m xi = 0 for all t ∈ [0, 1].

So, for all t ∈ (0, 1], we have

xk+1 +

(
∞∑

i=k+2

ti−(k+1)xi

)
= 0.

Again by the continuity, we see that

xk+1 +

(
∞∑

i=k+2

ti−(k+1)xi

)
= 0 for all t ∈ [0, 1].

Take t = 0, then we have xk+1 = 0. So we may conclude that

xi = 0 for all i = 1, 2, · · · , n, n+ 1, · · · ,

and hence, x = θ = (0, 0, · · · , 0, 0, · · · )>, which is a contradiction. The desired conclusion
follows.

Similarly, we can obtain that Hn is positive definite.

Remark 3.1. We show the positive definitiveness of infinite and finite dimensional gener-
alized Hilbert tensors with a ≥ 1. Then it is unknown whether or not Hn and H∞ have the
positive definitiveness for 0 < a < 1 or a < 0 with a ∈ R \ Z−.

3.2 Infinite dimensional generalized Hilbert tensors

Let
F∞x = (H∞xm−1)[

1
m−1

] (m is even) (3.1)

and

T∞x =

{
‖x‖2−ml1 H∞xm−1 x 6= θ

θ x = θ,
(3.2)

where x[
1

m−1
] = (x

1
m−1

1 , x
1

m−1

2 , · · ·x
1

m−1
n , · · · )> and θ = (0, 0, · · · , 0, · · · )>, the zero element of

a vector space lp. It is easy to see that both operators F∞ and T∞ are continuous and
positively homogeneous. Therefore our main interests are to study the boundedness of two
classes of operators.
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Theorem 3.2. Let F∞ and T∞ are defined by Eqs. (3.1) and (3.2), respectively. Assume
that a > 0.

(i) If x ∈ l1, then F∞x ∈ lp for m− 1 < p <∞. Moreover, F∞ is a bounded, continuous
and positively homogeneous operator from l1 into lp (m− 1 < p <∞). In particular,

‖F∞‖ = sup
‖x‖l1=1

‖F∞x‖l2(m−1) ≤ K(a),

where

K(a) =


2(m−1)

√
1
a2

+ π2

6
, 0 < a < 1;

2(m−1)

√
π2

6
, a ≥ 1.

(ii) If x ∈ l1, then T∞x ∈ lp for 1 < p < ∞. Moreover, T∞ is a bounded, continuous and
positively homogeneous operator from l1 into lp (1 < p <∞). In particular,

‖T∞‖ = sup
‖x‖l1=1

‖T∞x‖l2 ≤ C(a),

where

C(a) =


√

1
a2

+ π2

6
, 0 < a < 1;

π√
6
, a ≥ 1.

Proof. For x ∈ l1,

|(H∞xm−1)i| = lim
n→∞

∣∣∣∣∣
n∑

i2,··· ,im=1

xi2 · · ·xim
i+ i2 + · · ·+ im −m+ a

∣∣∣∣∣
≤ lim

n→∞

n∑
i2,··· ,im=1

|xi2 · · ·xim |
|i+ i2 + · · ·+ im −m+ a|

≤ lim
n→∞

n∑
i2,··· ,im=1

|xi2||xi3| · · · |xim|
|i+ 1 + · · ·+ 1︸ ︷︷ ︸

m−1

−m+ a|

=
1

i− 1 + a
lim
n→∞

n∑
i2,··· ,im=1

|xi2 ||xi3| · · · |xim |

=
1

i− 1 + a
lim
n→∞

(
n∑
k=1

|xk|

)m−1

=
1

i− 1 + a

(
∞∑
k=1

|xk|

)m−1

=
1

i− 1 + a
‖x‖m−1l1 .

Since a > 0, then for all positive integer i > 1, we have

1

(i− 1 + a)s
≤ 1

(i− 1)s
.
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So the series
∞∑
i=1

1
(i−1+a)s converges whenever s > 1.

(i) For m− 1 < p <∞, it follows from the definition of F∞ that
∞∑
i=1

|(F∞x)i|p =
∞∑
i=1

|
(
H∞xm−1

) 1
m−1

i
|p

=
∞∑
i=1

|
(
H∞xm−1

)
i
|

p
m−1

≤
∞∑
i=1

(
1

(i− 1 + a)
‖x‖m−1l1

) p
m−1

= ‖x‖pl1
∞∑
i=1

1

(i− 1 + a)
p

m−1

<∞

since s = p
m−1 > 1. Thus F∞x ∈ lp for all x ∈ l1. Furthermore, we have

‖F∞x‖lp =

(
∞∑
i=1

|(F∞x)i|p
) 1

p

≤M‖x‖l1 , (3.3)

where M =

(
∞∑
i=1

1

(i−1+a)
p

m−1

) 1
p

. Therefore F∞ is a bounded, continuous and positively

homogeneous operator from l1 into lp (m− 1 < p <∞). Take p = 2(m− 1), then for a ≥ 1,
we have a− 1 ≥ 0, and hence,

M =

(
∞∑
i=1

1

(i− 1 + a)2

) 1
p

≤

(
∞∑
i=1

1

i2

) 1
p

=
2(m−1)

√
π2

6
.

If 0 < a < 1, then

M =

(
∞∑
i=1

1

(i− 1 + a)2

) 1
p

≤

(
1

(1− 1 + a)2
+
∞∑
i=2

1

(i− 1)2

) 1
p

=
2(m−1)

√
1

a2
+
π2

6
.

It follows from (2.1) and (3.3) that

‖F∞‖ = sup
‖x‖l1=1

‖F∞x‖l2(m−1) ≤M ≤ K(a).

(ii) For 1 < p <∞, it follows from the definition of T∞ that
∞∑
i=1

|(T∞x)i|p =
∞∑
i=1

|(‖x‖2−ml1 H∞xm−1)i|p

= ‖x‖(2−m)p

l1

∞∑
i=1

|(H∞xm−1)i|p

≤ ‖x‖(2−m)p

l1

∞∑
i=1

(
1

(i− 1 + a)
‖x‖m−1l1

)p
= ‖x‖pl1

∞∑
i=1

1

(i− 1 + a)p
<∞
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since s = p > 1. Thus, T∞x ∈ lp for all x ∈ l1, Furthermore, we have

‖T∞x‖lp = (
∞∑
i=1

|(T∞x)i|p)
1
p ≤ C‖x‖l1 , (3.4)

where C =

(
∞∑
i=1

1
(i−1+a)p

) 1
p

> 0. So T∞ is a bounded, continuous and positively homogeneous

operator from l1 into lp (1 < p <∞). Similarly, take p = 2, then for a ≥ 1, we have

C =

(
∞∑
i=1

1

(i− 1 + a)2

) 1
2

≤

(
∞∑
i=1

1

i2

) 1
2

≤
√
π2

6
.

If 0 < a < 1, then

C =

(
∞∑
i=1

1

(i− 1 + a)2

) 1
2

≤

(
1

(1− 1 + a)2
+
∞∑
i=2

1

(i− 1)2

) 1
2

=

√
1

a2
+
π2

6
.

It follows from (2.1) and (3.4) that

‖T∞‖ = sup
‖x‖l1=1

‖T∞x‖l2 ≤ C ≤ C(a).

The desired results follow.

From the proof of Theorem 3.2, it is easy to obtain the following properties of operator
defined by infinite dimensional generalized Hilbert tensor H∞.

Theorem 3.3. For an m-order infinite dimensional generalized Hilbert tensor H∞ and
a > 0, let f(x) = H∞xm−1. Then f is a bounded, continuous and positively (m − 1)-
homogeneous operator from l1 into lp (1 < p <∞).

Remark 3.2. (i) In Theorem 3.3, H∞ defines a bounded operator for a > 0. Then it is
unknown whether or not H∞ is bounded for a < 0 with a ∈ R \ Z−.

(ii) For an m-order infinite dimensional generalized Hilbert tensor, the upper bounds of
norm of corresponding positively homogeneous operators are showed for a > 0, then
for a < 0 with a ∈ R \ Z−, it is unknown whether have similar conclusions or not.

(iii) Are the upper bounds the best in Theorem 3.2?

3.3 Finite dimensional generalized Hilbert tensors

Theorem 3.4. Let Hn be an m-order n-dimensional generalized Hilbert tensor. Assume
that a ∈ R \ Z− and

M(a) =


1
a
, a > 0;

1
min{a−[a],1+[a]−a} , −m(n− 1) < a < 0;

1
−m(n−1)−a , a < −m(n− 1),

where [a] denotes the largest integer not exceeding a. Then
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(i) |λ| ≤M(a)nm−1 for all H-eigenvalues λ of generalized Hilbert tensor Hn if m is even;

(ii) |µ| ≤M(a)n
m
2 for all Z-eigenvalues µ of generalized Hilbert tensor Hn.

Proof. Since a ∈ R \Z−, Using the proof technique of Proposition 1.1, it is obvious that for
all i1, i2, · · · , im ∈ {1, 2, · · · , n},

|i1 + i2 + · · ·+ im −m+ a| ≥ a for a > 0,

|i1 + i2 + · · ·+ im −m+ a| ≥ min{a− [a], 1− (a− [a])} for −m(n− 1) < a < 0,

|i1 + i2 + · · ·+ im −m+ a| ≥ −m(n− 1)− a for a < −m(n− 1).

In conclusion,
1

|i1 + i2 + · · ·+ im −m+ a|
≤M(a).

Then for each nonzero vector x ∈ Rn, we have

|Hnx
m| =

∣∣∣∣∣
n∑

i1,i2,··· ,im=1

xi1xi2 · · ·xim
i1 + i2 + · · ·+ im −m+ a

∣∣∣∣∣
≤

n∑
i1,i2,··· ,im=1

|xi1xi2 · · ·xim|
|i1 + i2 + · · ·+ im −m+ a|

≤M(a)
n∑

i1,i2,··· ,im=1

|xi1||xi2 | · · · , |xim|

= M(a)(
n∑
i=1

|xi|)m

= M(a)‖x‖m1 .

(i) From the fact that ‖x‖1 ≤ n1− 1
m‖x‖m, it follows that

|Hnx
m| ≤M(a)‖x‖m1 ≤M(a)(n1− 1

m‖x‖m)m

= M(a)nm−1‖x‖mm,

and hence, for all nonzero vector x ∈ Rn, we have∣∣∣∣Hn

(
x

‖x‖m

)m∣∣∣∣ =
|Hnx

m|
‖x‖mm

≤M(a)nm−1. (3.5)

It follows from the definition of eigenvalues of tensor that for each H-eigenvalue λ of gener-
alized Hilbert tensor Hn, there exists a nonzero vector y ∈ Rn such that

Hny
m−1 = λy[m−1],

and so,

Hny
m = y>(Hny

m−1) = λy>y[m−1] = λ

n∑
i=1

ymi = λ‖y‖mm

12

ch
in

aX
iv

:2
01

61
1.

00
88

7v
2



since m is even. Thus, it follows from (3.5) that

|λ| = |Hny
m|

‖y‖mm
=

∣∣∣∣Hn

(
y

‖y‖m

)m∣∣∣∣ ≤M(a)nm−1.

Since λ is arbitrary H-eigenvalue, this obtains the conclusion (i).
(ii) Similarly, from the fact that ‖x‖1 ≤

√
n‖x‖2, it follows that

|Hnx
m| ≤M(a)‖x‖m1 ≤M(a)n

m
2 ‖x‖m2 ,

and hence, for all nonzero vector x ∈ Rn, we have∣∣∣∣Hn

(
x

‖x‖2

)m∣∣∣∣ =
|Hnx

m|
‖x‖m2

≤M(a)n
m
2 . (3.6)

It follows from the definition of Z-eigenvalues of tensor that for each Z-eigenvalue µ of
generalized Hilbert tensor Hn, there exists a nonzero vector z ∈ Rn such that

Hnz
m−1 = µz(z>z)

m−2
2 ,

and so,

Hnz
m = z>(Hnz

m−1) = µz>z(z>z)
m−2

2 = µ

(
n∑
i=1

z2i

)m
2

= µ‖z‖m2 .

Thus, by (3.6), we have

|µ| = |Hnz
m|

‖z‖m2
=

∣∣∣∣Hn

(
z

‖z‖2

)m∣∣∣∣ ≤M(a)n
m
2 .

Since µ is arbitrary Z-eigenvalue, the desired conclusion follows.

Let a > 0. Then the generalized Hilbert tensor Hn is positive (all entries are positive)
and symmetric, and hence, its spectral radius ρ(Hn) and its E-spectral radius ρE(Hn) is its
H-eigenvalue and its Z-eigenvalue, respectively. For more details, see Chang, Pearson and
Zhang [1, 2], Qi [18], Song and Qi [21, 22] and Yang and Yang [27, 28]. So the following
colusions are easy to obtain by Theorem 3.4.

Corollary 3.5. Let Hn be an m-order n-dimensional generalized Hilbert tensor. Assume
that a > 0. Then

(i) |λ| ≤ ρ(Hn) ≤ nm−1

a
for all eigenvalues λ of generalized Hilbert tensor Hn if m is even;

(ii) |µ| ≤ ρE(Hn) ≤ n
m
2

a
for all E-eigenvalues µ of generalized Hilbert tensor Hn.

Remark 3.3. We prove the upper bounds of spectral radii in the above results. These upper
bounds may not be the best, then the following problems deserve us further research:

What is the best upper bounds? How compute such an upper bound?
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