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Abstract—Image steganography has become a focal point
of interest for researchers due to its capacity for the covert
transmission of sensitive data. Traditional diffusion models often
struggle with image steganography tasks involving paired data,
as their core principle of gradually removing noise is not directly
suited for maintaining the correspondence between carrier and
secret information. To address this challenge, this paper conducts
an in-depth analysis of the principles behind diffusion models
and proposes a novel framework for an image steganography
diffusion model. The study begins by mathematically represent-
ing the steganography tasks of paired images, introducing two
optimization objectives: minimizing the secrecy leakage function
and embedding distortion function. Subsequently, it identifies
three key issues that need to be addressed in paired image
steganography tasks and, through specific constraint mecha-
nisms and optimization strategies, enables the diffusion model
to effectively handle paired data. This enhances the quality of
the generated stego-images and resolves issues such as image
clarity. Finally, on public datasets like CelebA, the proposed
model is compared with existing generation model-based image
steganography techniques, analyzing its implementation effects
and performance parameters. Experimental results indicate that,
compared to current technologies, the model framework proposed
in this study not only improves image quality but also achieves
significant enhancements in multiple performance metrics, in-
cluding the imperceptibility and anti-detection capabilities of
the images. Specifically, the PSNR of its stego-images reaches
93.14dB, and the extracted images’ PSNR reaches 91.23dB, an
approximate improvement of 30% over existing technologies; the
attack success rate is reduced to 2.4×10−38. These experimental
outcomes validate the efficacy and superiority of the method in
image steganography tasks.

I. INTRODUCTION

In the digital age, information security has become a focal
point of societal concern. With the widespread adoption of the
internet and the explosive growth of digital media, traditional
encryption technologies can no longer meet the ever-increasing
security demands. Information hiding techniques [10], par-
ticularly image steganography, as a significant branch within
the realm of information security, offer new solutions for the
covert transmission of sensitive data. The essence of image
steganography lies in embedding secret information into digital
images, rendering it visually imperceptible, thereby facilitating
the clandestine transfer of information.

As deep learning technology rapidly evolves, image pro-
cessing methods based on generative models have demon-
strated exceptional performance across various domains. Deep
learning models such as Generative Adversarial Networks
(GANs) [7], [12], [28]and Variational Autoencoders (VAEs)
[8], [31] have achieved remarkable success in image generation

[19], editing [4], and restoration [27]. These models are
capable of learning complex data distributions and generat-
ing high-quality images, paving new possibilities for image
steganography.

However, despite the tremendous success of deep learning
in image processing, its application in the field of image
steganography still faces numerous challenges. Primarily, gen-
erative models must possess a high degree of flexibility and
robustness to accommodate different types of images and
varying levels of concealment requirements. Furthermore, the
quality of the generated images must be sufficiently high
to avoid arousing suspicion among attackers. Additionally,
effectively balancing the trade-off between stealthiness and
image quality remains an important research question.

Among them, diffusion models [3], [6], [21], [22] have
attracted considerable attention for their excellent perfor-
mance in generating high-resolution and high-quality im-
ages.However, despite the significant achievements of diffusion
models in the field of image generation, they are typically
not considered suitable for carrier-secret paired data image
steganography tasks. The primary reason is that the core
principle of diffusion models is to gradually remove noise
to generate images, which is not compatible with traditional
steganography techniques.

This study aims to challenge this conventional view by con-
ducting an in-depth analysis of the workings of diffusion mod-
els and exploring how to combine the diffusion process with
steganography techniques tailored to the unique requirements
of image steganography tasks. We propose a novel framework
that not only retains the ability of diffusion models to generate
high-quality images but also effectively embeds information
into images for the purpose of steganography. By breaking
down the steganography task into stages, we meticulously
designed each component of the model to ensure efficient
information embedding and extraction without compromising
image quality.

The significance of this study lies in two aspects: firstly, it
expands the application scope of diffusion models, providing
a new perspective and method for image steganography; sec-
ondly, by combining generative models with steganography
techniques, our approach is expected to enhance the secu-
rity and imperceptibility of steganography, holding significant
practical value for scenarios requiring highly confidential
communication. Furthermore, the findings of this research
offer new insights and potential research directions for the
future integration of deep learning with information hiding
technologies, contributing to the advancement and innovation
in related fields.
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II. RELATED WORKS

In recent years, with the rapid development of deep learn-
ing technologies, image steganography methods based on deep
neural networks have gradually emerged, bringing new break-
throughs to traditional steganography techniques. Gyojin et
al. [5] proposed a deep cross-modal steganography framework
that uses implicit neural representations (INRs) to hide various
formats of secret data within cover images. Mengnan et al.
[17] introduced an image steganography and extraction scheme
based on implicit symmetric generative adversarial networks,
utilizing two sets of generative adversarial networks to form a
zero-sum game relationship and reducing the risk of stegano-
graphic data leakage by optimizing the loss function. Guobiao
et al. [11] suggested disguising the steganography network
as a steganography deep neural network model performing
ordinary machine learning tasks. During the model camouflage
process, they selected and adjusted a subset of filters in the
secret DNN model to preserve its functionality on secret tasks,
while the remaining filters were reactivated according to partial
optimization strategies, disguising the secret DNN model as an
implicit DNN model. Despite the significant progress made in
the field of deep image steganography by the above research,
issues such as image quality loss and unclear image boundaries
still occur during the steganography process.

On the journey of exploring digital steganography, some
researchers have also noticed the remarkable effects of dif-
fusion models in the field of image generation. Ping Wei et
al. [25] proposed a steganalysis diffusion model that utilizes
non-Markov chains and fast sampling techniques to achieve
efficient stego image generation. It constructs an ordinary dif-
ferential equation (ODE) based on the transition probabilities
of the generation process in steganalysis diffusion, and uses
an approximate solver of the ODE - Euler iteration formula
to interconvert steganographic data and stego images, enabling
the use of irreversible but more expressive network structures
to achieve model reversibility. Yinyin Peng et al. [16] exploited
the probability distribution between intermediate states in the
reverse process of the diffusion model and the generated image,
hiding secret messages within the generated images through
message sampling, following the same probability distribu-
tion as normal generation. Although the above achievements
applied diffusion models to image steganography tasks, their
form of steganography was carrier-less, with the carrier image
being randomly generated during the image generation process,
rather than the traditional sense of carrier-secret paired data
image steganography tasks.

III. STEGANODDPM METHOD

This study firstly provided a description of the carrier-secret
paired data image steganography task, identifying two opti-
mization objective functions. Secondly, it briefly introduced the
prior knowledge required by the method. Lastly, it analyzed
three issues that need to be addressed when applying diffusion
models to image steganography tasks and resolved these issues
through practical solutions, resulting in a complete training and
prediction workflow for the image steganography denoising
diffusion model.

A. Representation for Image Steganography

In the carrier-secret paired data image steganography task,
there are two inputs: the carrier image A and the secret image
B to be hidden. A function S is defined to perform the
steganography process, where the output of S(A,B) is the new
image A∗ that hides the secret image B. The goal is for the new
image A∗ to be as close as possible to the original image A,
meaning that the smaller the difference ∥A−A∗∥, the better
the steganography effect. Therefore, a minimization function
for secret leakage is defined to optimize the steganography
process, as equation (1).

min ∥A− S(A,B)∥ (1)

Upon completion of the steganography task, the hidden
secret image B is extracted from the stego result A∗. A
function F is defined, where its input is the stego image A∗,
and its output is the extracted secret image B∗. Theoretically,
this process aims for the extracted secret image B∗ to be as
close as possible to the original secret image B, meaning that
the smaller the difference ∥B −B∗∥, the better the extrac-
tion result. Therefore, a minimization function for embedding
distortion is defined to optimize the extraction process, as
equation (2).

min ∥B − F (S(A,B))∥ (2)

This problem can also be described as a game where the
distance between A∗ and B∗ and A and B will determine the
winner. If A∗ is closer to A, A gets a payoff of 1; if B∗ is
closer to B, B gets a payoff of 1. A uses method S to make
A∗ gradually approach A, and B uses method M to make
B∗ gradually approach B. In addition, there is a correlation
between A∗ and B∗, that is, when B∗ is closer to B, the
distance between A∗ and B∗ is farther; when A∗ is closer to
A, the distance between B∗ and A∗ is closer.

Participant A can use method S to gradually approach A∗,
but since there is a correlation between A∗ and B∗, A needs
to consider whether B∗ may also be approached. Since when
B∗ is closer to B, A∗ is farther away from D, so A should
avoid method S getting too close to A∗ to prevent B∗ from
getting too close to B and causing A∗ to become too far away
from B∗ .

Similarly, participant B can use method M to gradually
approach B∗, but since there is a correlation between A∗ and
B∗, B needs to consider whether A∗ may also be approached.
Since when A∗ is closer to A, B∗ is closer to A∗, so B should
use method M to approach B∗ as much as possible, and ensure
that B∗ does not get too close to B, so that A∗ and B∗ Keep
the distance within a reasonable range.

Suppose B and B wish to maximize their payoff, where
the payoff depends on the distance between A∗ and B∗ from
them. Let the distance between A and A∗be dAC , the distance
between A∗ and B∗ be dA∗B∗ , and the distance between B and
B∗ be dBB∗ . Then the income of A and B can be expressed
as: PA = f(dAA∗) and PB = f(dBB∗) respectively.
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Let S and M denote the policy functions of A and B
respectively, then it can be expressed as:

dAA∗(t+ 1) = S(dAA∗(t), dBB∗(t)) (3)

dBB∗(t+ 1) = M(dBB∗(t), dAA∗(t)) (4)

where t represents the time step. Both S and M are functions
of two distances, representing the change in distance in the
next time step. Let F be a function of the distance between A
and A∗, and G be a function of the distance between A∗ and
B∗, then:

F (dAA∗) = dAA∗ (5)

G(dA∗B∗) = −dA∗B∗ (6)

So the problem is transformed into a problem of minimizing
F and maximizing G.

B. DDPM

xT ... xt xt-1 ... x0

p (xt-1|xt)

q (xt-1|xt)

Fig. 1. Schematic diagram of the forward noise addition and reverse denoising
process of the noise reduction diffusion model.

This study commences with the Denoising Diffusion Prob-
abilistic Model (DDPM) [3], [6], [21], [22], and this article
elucidates the fundamental principles of DDM in accordance
with the literature [14], [15].

As depicted in Figure 1, the process from x0 to xT

represents the forward noise addition process. The diffusion
commences with a clean data point x0 and subsequently
adds noise to it in sequence. The data point x0 follows the
distribution q(x0). For each time step t within the interval
[1, T ], the relationship between xt and its preceding state
x(t− 1) is defined as follows:

xt =
√
1− βtxt−1 +

√
βtϵ (7)

In the equation, ϵ ∼ N (0, I) denotes the noise sampled from
a Gaussian distribution, where βt is a fixed constant that
increases with t. Owing to the additive property of normal
distributions, the noisy data xt at a specified time step t is
expressed as:

xt = γtx0 + σtϵ (8)

Herein, γt and σt respectively define the scaling factors for the
signal and the noise, satisfying the relationship γ2

t + σ2
t = 1

as cited in [14], [15]. By setting αt = 1− βt, then

γt =

√√√√ t∏
i=1

αi (9)

The denoising diffusion model learns how to remove noise
during the backward denoising process. Conditioned on the
time step t, the model employs Bayes’ theorem to compute
the posterior probability:

p(xt−1|xt, x0) =
p(xt|xt−1, x0)p(xt−1|x0)

p(xt|x0)
(10)

From equation (4), we can derive

p(xt−1|xt) = N
(

1
√
αt

(
xt −

βt

γt
ϵ

)
,
βtγt−1

γ2
t

)
(11)

Contrarily to the original DAE [23] which predicts a clean
input, modern DDPMs often predict the noise ϵ The loss
function for this formulation is minimized as follows:

∥ϵ− net(xt)∥2 (12)

In the equation, net(xt) represents the output of the neural
network. Given a noise schedule conditioned on the time step t,
the network is trained across multiple levels of noise. During
generation, the trained model is iteratively applied until the
clean signal x0 is reached. As depicted in Figure 2, this
illustrates the classical DAE adding and predicting noise in
the image space.

image noised encoder decoder denoised

noise

Fig. 2. Schematic diagram of the classic DAE model for adding and predicting
noise in image space.

C. Steganographic Denoising DAE Model

In the context of image steganography, the key lies in
maintaining the visual quality and original characteristics of
the carrier image while covertly encoding information into the
image. This often requires specific algorithms to make subtle
adjustments to the pixel values, colors, or other features of the
image, thereby concealing data imperceptibly. Unlike image
steganography, the goal of DDPM models is to learn data
distributions and generate high-quality new images through
a process of gradual noise addition and removal. Therefore,
although DDPM excels in image generation, it is not directly
applicable to image steganography tasks as it is not specially
designed for the fine control and stealth required for such tasks.
This study proposes a steganographic denoising diffusion
model based on the DAE model structure, as shown in Figure
3.

Integrating DDPM models into image steganography tasks
presents three main challenges: First, the issue of image input;
existing DDPM models typically handle multiple inputs by
encoding information into the encoding results of the DAE
encoder, thereby affecting its output. However, the output is
uncertain because DDPM can only ensure the generation of
images that conform to the target distribution, not necessarily
their closeness to the carrier image. Second, adapting the
image steganography process to the training framework of
the DDPM model is necessary. The image steganography
process involves a multi-step learning procedure, including the
primary steps of embedding and extraction. In deep learning-
based image steganography, embedding and extraction are
usually divided into two different models that are jointly
or separately trained. Their training and validation processes
constitute a complete image processing workflow, whereas
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image B noised encoder decoder

image A*

image A

image B* denoised decoder encoder

noising 

function

Fig. 3. SteganoDAE involves attaching the carrier image A in the form of noise to the secret image B, entering the entire denoising diffusion process. The
primary process remains adding noise ϵ to image B and using DAE to learn how to remove noise ϵ, ultimately resulting in image B∗.

the DDPM model’s training process is not a complete image
processing workflow, as the model only learns the noising
process between adjacent states. Third, there is the design
problem of the objective function. Deep learning-based image
steganography typically uses a distance function between the
model’s generated results and the carrier and stego images as
the objective function, whereas the DDPM model’s objective
function uses the distance between the prediction result and
the noise ϵ.

1) Input to SteganoDAE Model: This method of noise
addition breaks the conventional notion in deep-learning-based
image steganography, which traditionally takes the carrier
image as the primary input and embeds the secret image upon
it. When the carrier image A is embedded into the secret
image B as noise, the entire denoising process enhances the
model’s ability to restore hidden information. This implies that
even in the face of disturbances such as image compression
and transmission distortion, the embedded information is more
likely to be fully recovered. Therefore, this study defines a
noise function θ(y) for transforming the carrier image into
noise:

θ(y) = ϵy (13)

where ϵ is sampled from a Gaussian distribution N (0, I), and
y represents the input image. At time instances t ∈ [1, T ], xt

and xt−1 satisfy the following relationship:

xt =
√
1− βtxt−1 +

√
βtθ(y) (14)

Then, at the specified time step t, the noisy data xt is
represented as:

xt = γtx0 + σtθ(y) (15)

This strategy allows for a more flexible approach to infor-
mation embedding, preserving as much detail of the secret
image as possible, and offers insights for exploring richer
methods of information embedding in subsequent studies.

2) Training and Prediction of SteganoDDPM: The
steganographic denoising DAE model consists of two serial
autoencoders, where one encoder is responsible for recovering
the carrier image A from embedded noise, with information
from the secret image B remaining in its intermediate result
image A∗. Subsequently, another encoder is tasked with recov-
ering the secret image B from the intermediate result image A∗

using the residual information of the secret image B, resulting
in the image B∗.

During the training process, the data flow is opposite to
that of the prediction process, as shown in Figure 4. Initially,
as formula (13) indicates, the noisy secret image B is fed
into AutoencoderB to generate the intermediate result image
A∗. Following this, the intermediate result image A∗ is input
into AutoencoderA to produce a denoised image C, making it
similar to the unnoised image B.

image A* encoder decoder
denoised 

image B

noised 

image B
encoder decoder image A*

Fig. 4. Schematic diagram of the classic DAE model for adding and predicting
noise in image space.
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The prediction process follows Algorithm 1, taking a
noiseless secret image B and carrier image A as input, starting
a reverse cycle traversal at moments t ∈ [1, T ]. In each cycle,
first, the secret image B is predicted by AutoencoderA as
the carrier image A, then noise from the carrier image A
is added to the secret image B through formula (13), and
finally, the secret image B is updated. The image obtained
after the traversal ends is the intermediate result image A∗.
Similarly, following the above method in a reverse cycle
traversal t ∈ [1, T ], the intermediate result image A∗ is input
into AutoencoderB to predict the secret image B, and after
adding its noise through formula (13), it is updated. The image
obtained after the traversal ends is the extracted secret image
B∗.

Algorithm 1 Prediction of SteganoDDPM
Require: Cover Image A; Secret Image B; Time List T ;

Noise Scheduler β
1: x← A
2: y ← B
3: n← length(T )
4: α← 1− β
5: α̂← cumprod(α)
6: i← n
7: while i > 0 do
8: px ← AutoencoderA(y)
9: if i ̸= 1 then

10: nx ← ϵx
n

11: else
12: nx ← 0
13: end if
14: x← 1√

α

(
x− 1−α√

1−α̂
px

)
+
√
βnx

15: i← i− 1
16: end while
17: i← n
18: while i > 0 do
19: py ← AutoencoderB(x)
20: if i ̸= 1 then
21: ny ← ϵx

n
22: else
23: ny ← 0
24: end if
25: y ← 1√

α

(
x− 1−α√

1−α̂
px

)
+
√
βny

26: i← i− 1
27: end while
28: return x, y

3) Optimization Function of SteganoDDPM: As the
steganographic denoising DAE model is divided into two
steps—steganography and extraction in the image steganog-
raphy process, with the intermediate result image A∗ and the
extraction result image B∗ being the optimization targets, it
follows from equation (12) that the minimization of the secrecy
leakage function can be rewritten as:

lA = ∥θ(A)−A∗∥2 (16)

The minimization of the embedding distortion function can be
expressed as:

lB = ∥θ(B)−B∗∥2 (17)

Therefore, the objective function of the steganographic denois-
ing diffusion model is:

ltotal = lA + lB (18)

IV. ANALYZE AND COMPARE

To assess the performance of the proposed image steganog-
raphy diffusion model framework, this study has designed a
series of experiments and conducted comparative analyses with
existing technologies.

A. Experimental Design

This study’s experimental design employs multiple datasets
and baseline methods for an in-depth comparison of the
proposed model framework’s effectiveness, aiming to compre-
hensively evaluate the performance of the proposed model and
to confirm its superiority through comparison with existing
technologies.

1) Dataset Preparation: For a comprehensive evaluation of
the model’s performance, this study selected public datasets
such as CelebA [30] and DIV2K [1] for experiments. The
CelebA dataset encompasses a vast array of facial images,
offering diversity and complexity that better tests the model’s
real-world performance. The DIV2K dataset includes 1000
images from various scenes, chosen from different categories
to enhance the dataset’s diversity and challenge.

2) Baseline Methods: To compare the model framework
proposed in this study, existing image steganography tech-
niques were selected as baseline methods. These methods
include traditional LSB (Least Significant Bit) steganography
[13], deep learning-based steganography [2], [29], and gener-
ative adversarial network-based steganography [17].

3) Evaluation Indicators: To thoroughly assess the model’s
performance, thisTo thoroughly assess the model’s perfor-
mance, this for comparative analysis [18], including peak
signal-to-noise ratio (PSNR) [9], structural similarity (SSIM)
[24], etc. These metrics enable the assessment of the generated
stego-image quality from various perspectives, including the
visual quality of the image, the degree of structural information
preservation, and the similarity with the original image.

PSNR is used to measure the similarity between the orig-
inal image and the stego-image, with the calculation formula
given as:

PSNR = 10× log

(
2552

MSE

)
(19)

where MSE (Mean Squared Error) denotes the mean squared
error, with the calculation formula provided as:

MSE =
1

m× n

∑∑
IA(i, j)− IB(i, j) (20)

where IA and IB represent the original image and the stego-
image, respectively, while m and n denote the width and height
of the image, respectively.

SSIM is used to compare the structural similarity between
two images, with the calculation formula as:

SSIM(x, y) = [I(x, y)]α[c(x, y)]β [s(x, y)]γ (21)
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Among the metrics, I(x, y), c(x, y), and s(x, y) represent
brightness, contrast, and structural similarity, respectively, with
α, β and γ being the weighting coefficients.

Additionally, this study also employed several other metrics
to assess the model’s security, including Attack Success Rate
(ASR), stego-image quality, and Extraction Accuracy (EA).

Experiments simulated attacks using one of the most com-
mon attack methods, histogram attacks, by calculating the ratio
of successful attacks to the total number of attacks to determine
the attack success rate, thereby examining the model’s ability
to resist attacks.

When comparing attack success rates, we use the following
method for quantitative estimation. Assuming that we have
an original image I0 and an image Is with steganographic
information, their size is m×n pixels, and each pixel contains
three channels (ie, RGB channels), and the two images are
represented as:

I0 = [I0,1, I0,2, I0,3], Is = [Is,1, Is,2, Is,3] (22)

where I0,i and Is,i denote the pixel values of the original image
and the steganographic image on the i-th channel, respectively.
Using wavelet transform to extract the features of the image,
for each channel i, a coefficient matrix Ci can be obtained,
whose size is m

2 ×
n
2 . Perform wavelet transform (DWT) on

each channel i of the original image and the steganographic
image to obtain:

CL
0,i, C

H
0,i, C

V
0,i, C

D
0,i = DWT (I0,i) (23)

CL
s,i, C

H
s,i, C

V
s,i, C

D
s,i = DWT (Is,i) (24)

Where CL
0,i, C

L
s,i is the coefficient matrix of the low frequency

part, CH
0,i, CH

s,i is the coefficient matrix of the horizontal
high frequency part , CV

0,i, CV
s,i is the coefficient matrix of

the vertical high frequency part, CD
0,i, CD

s,i is the diagonal
high frequency part of the coefficient matrix. Here only the
coefficient matrix of the low frequency part is kept:

C0,i = CL
0,i, Cs,i = CL

s,i (25)

Then, the coefficient matrices of the three channels are merged
into a three-dimensional array by channel to obtain:

C0 = [C0,1, C0,2, C0,3] (26)

Next, calculate the Euclidean distance d between these two
coefficient arrays:

d = ∥C0 − Cs∥ (27)

Finally, calculate the attack success rate p, assuming that the
attacker can guess the embedded information with a certain
probability, then:

p = e−
d2

2α2 (28)

Among them, α is a constant, representing the standard de-
viation of Gaussian distribution, which is used to control the
scope of the attacker guessing the steganographic information.
The smaller the α, the smaller the space range for the attacker
to guess the steganographic information, and correspondingly,
the lower the attack success rate; on the contrary, the larger the
α, the higher the attack success rate. In order to facilitate the
observation of the experimental results, this paper uses In the
experiment, a larger value of α was selected, and the following

results are the results when the value of α is 50.The results
are shown in Table II.

EA is an indicator that measures the precision of a
steganography algorithm in extracting information from a
stego-image. Assuming that the information extracted from
the stego-image by the steganography algorithm is S′, and the
original information is S, then the image extraction accuracy
can be represented as equation (18).

EA =
∥S′ ∩ S∥
∥S∥

(29)

where ∩ denotes the intersection of two sets, and ∥S′∥ and
∥S∥ represent the sizes of the extracted information and the
original information, respectively.

B. Compare Results

Through experimental design and comparative analysis,
this study has demonstrated that the proposed image steganog-
raphy diffusion model framework achieves superior perfor-
mance in multiple aspects. These experimental results fully
showcase the applicability and effectiveness of the model
framework in image steganography tasks.

1) Visual Effects Evaluation: Figure 5 demonstrates a com-
parison of images processed using the proposed steganographic
denoising diffusion model with the original carrier image and
the original secret image. It can be clearly observed from the
figure that the steganography-processed image is very similar
to the original carrier image visually, and compared to the
original secret image, its detailed features have been effectively
preserved.

This result indicates the superior performance of the pro-
posed model in maintaining image quality, which is due to
the ability of the DDPM model in generating images. The
combination of DDPM and DAE can better restore the carrier
image, thereby maintaining its visual quality.

2) Comparison of quality indicators: Table 1 presents a
comparison of the results of the model framework proposed
in this study with other existing technologies on different
evaluation metrics over the CelebA dataset. According to the
data in the table, it is evident that the model framework
proposed in this study shows a significant improvement in the
PSNR metric compared to other technologies, with an average
increase of 56.56dB, while remaining roughly on par with
other existing technologies in terms of the SSIM metric.

Methods PSNR(Extract) SSIM(Extract)
Ours 91.23 0.9433

Method [17] 34.67 0.9919
Method [2] 33.63 0.9429
Method [29] 25.97 0.9160
Method [20] 45.84 0.9880

LSB [13] 27.59 0.7962
TABLE I. IMAGE QUALITY ASSESSMENT RESULTS.

These findings suggest that the steganographic denoising
diffusion model framework proposed in this study performs
exceptionally well in generating the quality of stego-images.
Compared to existing technologies, this model framework has
the capability to produce higher-quality stego-images, offering
better visual quality and structural information preservation.
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Cover Image        Secret Image        Steg Image       Extract Image Cover Image        Secret Image        Steg Image       Extract Image

Fig. 5. Visual effects implemented by SteganoDDPM. The figure shows the effect of training on the DIV2K (left) and CelebA (right) datasets.

This outcome further substantiates the superior perfor-
mance of the proposed model in generating high-quality stego-
images, that is, the SteganoDAE model proposed in this study
successfully achieves its goal by learning to minimize alter-

ations to the carrier image during the steganography process.
The optimization objectives of this research include minimiz-
ing secrecy leakage and embedding distortion. These two goals
correspond to maintaining the closeness of the carrier image
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to the original image and the closeness of the secret image
to the extracted stego-image, respectively. By simultaneously
optimizing these two objectives, it can be ensured that the
steganography process neither significantly alters the carrier
image nor compromises the accurate extraction of hidden
information.

3) Steganography Robustness and Security Comparison:
The comparative results are presented in Table 2, which
demonstrate that the proposed method maintains high security
under histogram attacks, with an attack success rate of merely
2.4×10−38%, significantly lower compared to the benchmark
models; the extraction accuracy reached 62.76%, which is
16.81% higher than existing models.

Methods ASR(%) PSNR(Steg) EA(%)
Ours 2.4 × 10−38 93.14 62.76

Method [17] 2.8 × 10−17 35.05 45.93
Method [2] 7.4 × 10−17 34.63 44.63
Method [29] 1.3 × 10−16 26.72 42.25
Method [20] 3.8 × 10−18 62.34 50.00

LSB [13] 46.38 51.13 22.61
TABLE II. IMAGE SECURITY ASSESSMENT RESULTS. PART OF THE

DATA COMES FROM THE CITE [26].

The method proposed in this study enhances the model’s
ability to recover hidden information, ensuring complete
restoration of information even under interference. The low
attack success rate and high extraction accuracy under his-
togram attacks further substantiate the model’s robustness and
security.

4) Border Clarity Comparison: In addressing the issue of
unclear image boundaries in existing technologies, the model
framework proposed by this study, through an improved diffu-
sion model principle, is better equipped to preserve boundary
information of images. As shown in Figure 6, experimental re-
sults indicate that the model framework significantly enhances
boundary clarity compared to existing technologies.

Cover Image        Secret Image        Steg Image       Extract Image

Fig. 6. Comparison of border details. As shown in the figure, the boundary
clarity of the steganographic and extracted images is significantly improved.

This is attributed to the model’s composition of two serial
autoencoders: the first autoencoder is responsible for restoring
the carrier image, while the second exploits the residual secret
image information to recover the secret image. This design
enables the model to maintain high precision during both the
steganography and extraction processes.

V. CONCLUSION

This study has conducted an in-depth exploration of the
traditional notions of diffusion models in image steganography
tasks and has successfully proposed an innovative image
steganography diffusion model framework. Given that the core
principle of diffusion models is to progressively eliminate

noise, many researchers believed they were unsuitable for
image steganography tasks. However, by thoroughly analyzing
the principles of diffusion models and integrating the character-
istics of image steganography tasks, this study has successfully
challenged this conventional perspective. The proposed image
steganography diffusion model framework has been validated
not only theoretically but also experimentally for its appli-
cability in image steganography tasks. To a certain extent,
the framework resolves issues present in existing technologies,
such as the low quality of generated stego-images and unclear
image boundaries, significantly enhancing the quality of stego-
images. Experimental evidence demonstrates that the model
framework can produce high-quality stego-images and exhibits
superior performance across multiple indicators compared to
existing technologies. This research paves a new technical path
for image steganography tasks and hopes that more researchers
will further explore this direction in their future work.
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[10] K. Lamshöft, T. Neubert, C. Krätzer, C. Vielhauer, and J. Dittmann,
“Information hiding in cyber physical systems: Challenges for embed-
ding, retrieval and detection using sensor data of the swat dataset,” in
Proceedings of the 2021 ACM Workshop on Information Hiding and
Multimedia Security, Jun 2021.

[11] G. Li, S. Li, M. Li, X. Zhang, and Z. Qian, “Steganography of
steganographic networks,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 37, no. 4, 2023, pp. 5178–5186.

[12] J. Liu, Y. Ke, Z. Zhang, Y. Lei, J. Li, M. Zhang, and X. Yang, “Recent
advances of image steganography with generative adversarial networks,”
IEEE Access, p. 60575–60597, Jan 2020.

[13] J. Mielikainen, “Lsb matching revisited,” IEEE signal processing letters,
vol. 13, no. 5, pp. 285–287, 2006.

[14] A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilis-
tic models,” in International conference on machine learning. PMLR,
2021, pp. 8162–8171.

[15] W. Peebles and S. Xie, “Scalable diffusion models with transformers,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2023, pp. 4195–4205.

8

C
h

in
aX

iv
:2

02
40

4.
00

28
7v

1



[16] Y. Peng, D. Hu, Y. Wang, K. Chen, G. Pei, and W. Zhang, “Stegad-
dpm: Generative image steganography based on denoising diffusion
probabilistic model,” in Proceedings of the 31st ACM International
Conference on Multimedia, 2023, pp. 7143–7151.

[17] J. Y. Qu Mengnan and W. Jiang, “Research on image steganography and
extraction scheme based on implicit symmetric generative adversarial
network,” Journal of Information Securyity Research, vol. 9, no. 6, pp.
566–572, 2023.

[18] D. R. I. M. Setiadi, “Psnr vs ssim: imperceptibility quality assess-
ment for image steganography,” Multimedia Tools and Applications,
p. 8423–8444, Mar 2021.

[19] T. R. Shaham, T. Dekel, and T. Michaeli, “Singan: Learning a generative
model from a single natural image,” in 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), Oct 2019.

[20] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein,
“Implicit neural representations with periodic activation functions,”
Advances in neural information processing systems, vol. 33, pp. 7462–
7473, 2020.

[21] Y. Song and S. Ermon, “Generative modeling by estimating gradients
of the data distribution,” Advances in neural information processing
systems, vol. 32, 2019.

[22] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon,
and B. Poole, “Score-based generative modeling through stochastic
differential equations,” arXiv preprint arXiv:2011.13456, 2020.

[23] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extract-
ing and composing robust features with denoising autoencoders,” in
Proceedings of the 25th international conference on Machine learning,
2008, pp. 1096–1103.

[24] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[25] P. Wei, Q. Zhou, Z. Wang, Z. Qian, X. Zhang, and S. Li, “Generative
steganography diffusion,” arXiv preprint arXiv:2305.03472, 2023.

[26] S. Yang, S. Song, C. D. Yoo, and J. Kim, “Flexible cross-
modal steganography via implicit representations,” arXiv preprint
arXiv:2312.05496, 2023.

[27] X. Yu, Y. Qu, and M. Hong, Underwater-GAN: Underwater Image
Restoration via Conditional Generative Adversarial Network, Jan 2019,
p. 66–75.

[28] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. Metaxas,
“Stackgan: Text to photo-realistic image synthesis with stacked gener-
ative adversarial networks,” in 2017 IEEE International Conference on
Computer Vision (ICCV), Oct 2017.

[29] R. Zhang, F. Zhu, J. Liu, and G. Liu, “Depth-wise separable convo-
lutions and multi-level pooling for an efficient spatial cnn-based ste-
ganalysis,” IEEE Transactions on Information Forensics and Security,
vol. 15, pp. 1138–1150, 2019.

[30] Y. Zhang, Z. Yin, Y. Li, G. Yin, J. Yan, J. Shao, and Z. Liu, “Celeba-
spoof: Large-scale face anti-spoofing dataset with rich annotations,” in
Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XII 16. Springer, 2020,
pp. 70–85.

[31] S. Zhao, J. Song, and S. Ermon, “Infovae: Information maximizing
variational autoencoders,” Cornell University - arXiv,Cornell University
- arXiv, Jun 2017.

9

C
h

in
aX

iv
:2

02
40

4.
00

28
7v

1


