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1 Introduction

Recent observations of type Ia supernovae (SNe Ia) suggest that the expansion of the
universe is accelerating and that two-thirds of the total energy density exists in a dark

energy component with negative pressure [1]. In addition, measurements of the cosmic

microwave background (CMB) [2] and the galaxy power spectrum [3] also indicate the
existence of the dark energy. The simplest candidate for the dark energy is a cosmological

constant �, which has pressure P� = ���. Speci�cally, a reliable model should explain why
the present amount of the dark energy is so small compared with the fundamental scale

(�ne-tuning problem) and why it is comparable with the critical density today (coincidence
problem). The cosmological constant su�ers from these problems. One possible approach

to construct a viable model for dark energy is to associate it with a slowly evolving and
spatially homogeneous scalar �eld �, called \quintessence" [4, 5]. Such a model for a broad

class of potentials can give the energy density converging to its present value for a wide set
of initial conditions in the past and possess tracker behavior.

Recently, the Chaplygin gas model was proposed as an alternative to the cosmological

constant in explaining the accelerating universe [6]. The Chaplygin gas is characterized by
an exotic equation of state P = �A=�, where A is a positive constant. An attractive feature

of the model is that it can naturally explain both dark energy and dark matter. The reason
is that the Chaplygin gas behaves as dust-like matter at early stage and as a cosmological

constant at later stage. Some possible motivations for this model from the �eld theory point
of view are discussed in Refs. [7]. The Chaplygin gas appears as an e�ective uid associated

with d-branes [8] and can also be derived from the Born-Infeld action [9]. An interesting
range of models was found to be consistent with SN Ia data [10], CMB experiments [11]

and other observational data [12]. The Chaplygin gas model has been extensively studied
in the literature [13].

However, the Chaplygin gas model produces oscillations or exponential blowup of the

matter power spectrum that are inconsistent with observation [14]. In Ref. [15], we con-
sidered a variable Chaplygin gas (VCG) model and showed that it interpolates between

a universe dominated by dust and a quiessence-dominated one described by the constant
equation of state. Furthermore, we showed that the model corresponds to a Born-Infeld

tachyon action [15]. Recently, the model parameters were constrained using the location of
peaks of the CMB spectrum and SN Ia data [16]. In this paper we consider observational

constraints on the VCG model from the gold sample of 157 SN Ia data and the recent mea-
surements of the X-ray gas mass fractions in 26 galaxy clusters. We perform a combined

analysis of these databases and obtain the con�dence region on the two parameters. Our
results indicate that the original Chaplygin gas is ruled out at 3� con�dence level.
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2 Variable Chaplygin Gas

Let us now consider the VCG characterized by the equation of state

Pv = �
A(a)

�v
; (1)

where A(a) is a positive function of the cosmological scale factor a. This assumption is
reasonable since A(a) is related to the scalar potential if we take the Chaplygin gas as a

Born-Infeld tachyon �eld [9, 15]. In a spatially at Friedmann-Robertson-Walker (FRW)
universe, the energy conservation equation is

d�v

da
= �3

�v + Pv

a
: (2)

By inserting Eq. (1) into the above equation, one �nds that the VCG density evolves as

�v(a) = a�3

�

6
Z

A(a)a5da + B
�1=2

; (3)

where B is an integration constant. Given a function A(a), Eq. (3) allows us to obtain a
solution �v(a). We assume A(a) is of the form A(a) = A0a

�n, where A0 and n are constants.

This ansatz has the following important features: a) the VCG model with n = 0 reduces
to the original scenario, b) we will see that the VCG behaves as a quiessence rather than a

cosmological constant at late times and c) the function �(a) can be calculated analytically.
Then from Eq. (3) it follows that

�v(a) =

s

6

6 � n

A0

an
+

B

a6
: (4)

Note that n = 0 corresponds to the original Chaplygin gas scenario, in which the Chaplygin
gas behaves initially as dust-like matter and later as a cosmological constant [6]. However,

Eq. (4) shows that, in the VCG scenario, it interpolates between a dust-dominated phase
and a quiessence-dominated phase described by the constant equation of state w = �1 +

n=6 [17]. From Eq. (4) we get the present value of the energy density of the VCG

�v0 =

s

6

6 � n
A0 + B ; (5)

where the present value of the scale factor is normalized to unity, i.e., a0 = 1. De�ning

Bs � B=�2
v0, Eq. (4) takes the form

�v(z) = �v0

h

Bs(1 + z)6 + (1 � Bs)(1 + z)n
i1=2

; (6)

where z = 1=a � 1 is redshift. In the spatially at FRW metric the Friedmann equation

can be written as

H2 =
�2

3
(�b + �v); (7)
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where H � _a=a is the Hubble parameter, �2
� 8�G is the gravitational coupling and �b is

the energy density of the baronic matter. Substituting Eq. (6) into the Friedmann equation

(7) gives

H2(z)=H2
0 = 
b(1 + z)3 + (1 � 
b)

�

h

Bs(1 + z)6 + (1 � Bs)(1 + z)n
i1=2

� E2(z; 
b; Bs; n); (8)

where H0 � 100h kms�1Mpc�1 is the present value of the Hubble parameter and 
b is the

density parameter of the baryonic matter component. Then it is straightforward to show
that the luminosity distance dL and the angular diameter distance dA in the spatially at

FRW universe are respectively given by

dL =
c

H0

(1 + z)
Z z

0

dz

E(z)
; (9)

dA = (1 + z)�2dL: (10)

3 Supernova Ia Constraints

Let us now consider constraints on the VCG model from the gold sample of 157 SN Ia data
compiled in Ref. [18]. The parameters in the model are determined by minimizing

�2
SN =

157
X

i=1

[�mod(zi; h; 
b; Bs; n) � �obs(zi)]
2

�2
i

; (11)

where �i is the total uncertainty in the observation, �obs is the observed distance modulus

of SNe Ia, and �mod(zi) is the theoretical distance modulus

�mod(zi) = 5 log10

dL(zi)

Mpc
+ 25: (12)

To determine the likelihood of the parameters Bs and n, we marginalize the likelihood

function L = exp(��2=2) over h and 
b. We adopt Gaussian priors such that h = 0:72�0:08
from the Hubble Space Telescope Key Project [19] and 
bh

2 = 0:0214 � 0:0020 from the

observed abundances of light elements together with primordial nucleosynthesis [20]. The
results of our analysis for the VCG model are displayed in Fig. 1. We show 68.3%, 95.4%

and 99.7% con�dence level contours in the (Bs, n) plane. The best-�t model parameters

and marginalized 1� error bars are Bs = 0:223+0:057
�0:059 and n = �3:0+2:4

�6:2 with �2
min = 174:253.

The results show that the two parameter Bs and n are highly degenerate. It is interesting to

note that the dark energy component with w < �1 is favored, which allows the possibility
that the dark energy density in increasing with time.
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Figure 1: Probability contours for Bs versus n are shown at 1�, 2�, and 3� when 
tot = 1.

These constraints use the gold sample of 157 SN Ia data [18].
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Figure 2: Probability contours for Bs versus n are shown at 1�, 2�, and 3� when 
tot = 1.

These constraints use the X-ray gas mass fraction in 26 galaxy clusters [25].
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4 Constraints from the X-ray Gas Mass Fraction of

Galaxy Clusters

The matter content of rich clusters of galaxies is thought to provide a fair sample of the

matter content of the universe as a whole. The observed ratio of the baryonic to total mass
in clusters should therefore closely match the ratio of the cosmological parameter 
b=
m,

where 
b and 
m are the mean baryon and total mass densities of the universe in units of
the critical density. The combination of robust measurements of the baryonic mass fraction

in clusters with accurate determinations of 
b from cosmic nucleosynthesis calculations
can therefore be used to determine 
m [21]. The measurements of the apparent redshift

dependence of the baryonic mass fraction can also, in principle, be used to constrain the
geometry and dark energy density of the universe [22]. The �rst successful application

of such a test was carried out by Allen et al. using a small sample of X-ray luminous,
dynamically relaxed clusters with precise mass measurements, spanning the redshift range

0:1 < z < 0:5 [23] (see also [24]). Recently Allen et al. present a signi�cant extension

and obtained a tight constraint on the mean matter density and dark energy equation of
state parameter. The clusters sample is signi�cantly larger and includes 26 X-ray luminous,

dynamically relaxed systems spanning the redshift range 0:07 < z < 0:9 [25]. We will use
this database to constraint the VCG model. To determine the con�dence region of the

model parameters, we use the following �2 function

�2
Xray =

26
X

i=1

h

fmod
gas (zi; h; 
b; Bs; n) � f obs

gas; i

i2

�2
gas; i

; (13)

where f obs
gas; i is the measured X-ray gas mass fraction fgas with the defaut standard cold

dark matter (SCDM) cosmology, �gas; i is the symmetric root mean square errors, and fmod
gas; i

is the model function

fmod
gas (zi) =

b
b

(1 + 0:19h1=2)
e�
m

"

h

0:5

dSCDM
A (zi)

dmod
A (zi)

#3=2

; (14)

where the bias factor b = 0:824 � 0:089 [25] is a parameter motivated by gas dynamical

simulations, which suggest that the baryon fraction in clusters is slightly depressed with
respect to the universe as a whole, and the e�ective matter density parameter is


e�
m = 
b + (1 � 
b)

q

Bs : (15)

Adopting Gaussian priors such that h = 0:72 � 0:08 and 
bh
2 = 0:0214 � 0:0020, the

68.3%, 95.4% and 99.7% con�dence level contours in the (Bs, n) plane are shown in Fig. 2.

The best-�t model parameters and marginalized 1� error bars are Bs = 0:049+0:016
�0:015 and

n = 0:5+1:0
�1:1 with �2

min = 24:437. The results favor the original Chaplygin gas model with

n = 0.
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