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Abstract

In this paper, we introduce the concept of Z1-eigenvalue to in�nite dimensional

generalized Hilbert tensors (hypermatrix) H1
� = (Hi1i2���im),

Hi1i2���im =
1

i1 + i2 + � � � im + �
; � 2 R n Z�; i1; i2; � � � ; im = 0; 1; 2; � � � ; n; � � � ;

and proved that its Z1-spectral radius is not larger than � for � > 1
2 , and is at most

�
sin�� for 1

2 � � > 0. Besides, the upper bound of Z1-spectral radius of an mth-order

n-dimensional generalized Hilbert tensor Hn
� is obtained also, and such a bound only

depends on n and �.
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radius, Hilbert inqualities.
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1 Introduction

A generalized Hilbert matrix has the form [13]:

H1
� =

�
1

i+ j + �

�
i;j2Z+

(1.1)

where Z+ (Z�) is the set of all non-negative (non-positive) integers and � 2 R nZ�: Denote
such a Hilbert matrix with i; j 2 In = f0; 1; 2; � � � ; ng by Hn

� : When � = 1, such a matrix
is called Hilbert matrix, which was introduced by Hilbert [12]. Choi [6] and Ingham [14]
proved that Hilbert matrix H1

1 is a bounded linear operator (but not compact operator)
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from Hilbert space l2 into itself. Magnus [18] and Kato [15] studied the spectral properties
of H1

1 . Frazer [7] and Taussky [29] discussed some nice properties of n-dimensional Hilbert
matrix Hn

1 . Rosenblum [23] showed that for a real � < 1, H1
� de�nes a bounded operator

on lp for 2 < p < 1 and that � sec �u is an eigenvalue of H1
� for j<uj < 1

2
� 1

p
. For each

non-integer complex number �, Aleman, Montes-Rodr��guez, Sarafoleanu [1] showed that H1
�

de�nes a bounded linear operator on the Hardy spaces Hp (1 < p <1).
As a natural extension of a generalized Hilbert matrix, the generalized Hilbert tensor

(hypermatrix) was introduced by Mei and Song [24]. For each � 2 R nZ�, the entries of an
mth-order in�nite dimensional generalized Hilbert tensor H1

� = (Hi1i2���im) are de�ned by

Hi1i2���im =
1

i1 + i2 + � � � im + �
; i1; i2; � � � ; im = 0; 1; 2; � � � ; n; � � � : (1.2)

They showed H1
� de�nes a bounded and positively (m � 1)-homogeneous operator from l1

into lp (1 < p <1). Song and Qi [25] studied the operator properties of Hilbert tensors H1
1

and the spectral properties of Hn
1 . Such a tensor, H1

� may be refered to as a Hankel tensor
with v = (1; 1

2
; 1
3
; � � � ; 1

n
; � � � ). The concept of Hankel tensor was introduced by Qi [22]. For

more further research of Hankel tensors, see Qi [22], Chen and Qi [5], Xu [31]. Denote such
an mth-order n-dimensional generalized Hilbert tensor by Hn

�:

For a real vector x = (x1; x2; � � � ; xn; xn+1; � � � ) 2 l1, H1
� x

m�1 is an in�nite dimensional
vector with its ith component de�ned by

(H1
� x

m�1)i =
1X

i2;��� ;im=0

xi2 � � �xim
i+ i2 + � � �+ im + �

; � 2 R n Z�; i = 0; 1; 2; � � � : (1.3)

Accordingly, H1
� x

m is given by

H1
� x

m =
1X

i1;i2;��� ;im=0

xi1xi2 � � �xim
i1 + i2 + � � �+ im + �

; � 2 R n Z�: (1.4)

Mei and Song [24] proved that H1
� x

m < 1 and H1
� x

m�1 2 lp (1 < p < 1) for all real
vector x 2 l1.

In this paper, we will introduce the concept of Z1-eigenvalue � for an mth-order in�nite
dimensional generalized Hilbert tensor H1

� and will study some upper bounds of Z1-spectral
radius for in�nite dimensional generalized Hilbert tensor H1

� and n-dimensional generalized
Hilbert tensor Hn

�.
In Section 2, we will give some Lemmas and basic conclusions, and introduce the concept

of Z1-eigenvalue. In Section 3, with the help of the Hilbert type inequalities, the upper bound
of Z1{spectral radius of H1

� with � > 0 is at most � when � > 1
2
, and is not larger than

�
sin��

when 0 < � � 1
2
. Furthermore, for each Z1-eigenvalue � of Hn

�, j�j is smaller than or
equal to C(n; �), where C(n; �) only depends on the structured coe�cient � of generalized
Hilbert tensor and the dimensionality n of European space.
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2 Preliminaries and Basic Results

For 0 < p < 1, lp is a space consisting of all real number sequences x = (xi)
+1
i=1 satisfying

+1P
i=1

jxijp <1: If p � 1, then a norm on lp is de�ned by

kxklp =
 

+1X
i=1

jxijp
! 1

p

:

It is well known that l2 is a Hilbert space with the inner product

hx; yi =
+1X
i=0

xiyi:

Clearly, kxkl2 =
phx; xi:

For p � 1, a norm R
n can be de�ned by

kxkp =
 

nX
i=1

jxijp
! 1

p

:

It is well known that
kxk2 � kxk1 �

p
nkxk2: (2.1)

The following Hilbert type inequalities were proved by Frazer [7] on Rn and Ingham [14]
on l2, respectively.

Lemma 2.1. (Frazer [7]) Let x = (x1; x2; � � � ; xn)> 2 Rn. Then

nX
i=0

nX
j=0

jxijjxjj
i+ j + 1

� (n sin
�

n
)

nX
k=0

x2k = kxk22n sin
�

n
; (2.2)

Lemma 2.2. (Ingham [14]) Let x = (x1; x2; � � � ; xn; � � � )> 2 l2 and a > 0. Then

1X
i=0

1X
j=0

jxijjxjj
i+ j + a

�M(a)
1X
k=0

x2k = M(a)kxk2l2 ; (2.3)

where

M(a) =

(
�

sin a�
; 0 < a � 1

2
;

�; a > 1
2
:

An m-order n-dimensional tensor (hypermatrix) A = (ai1���im) is a multi-array of real
entries ai1���im 2 R, where ij 2 In = f1; 2; � � � ; ng for j 2 [m] = f1; 2; � � � ;mg. We use
Tm;n denote the set of all real mth-order n-dimensional tensors. Then A 2 Tm;n is called a
symmetric tensor if the entries ai1���imare invariant under any permutation of their indices.
A 2 Tm;n is called nonnegative (positive) if ai1i2���im � 0(ai1i2���im > 0) for all i1; i2; � � � ; im.
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De�nition 2.1. (Chang and Zhang [2]) Let A 2 Tm;n: A number � 2 R is called Z1-
eigenvalue of A if there is a real vector x such that(

Axm�1 = �x

kxk1 = 1
(2.4)

and call such a vector x an Z1-eigenvector associated with �.

For the concepts of eigenvalues of higher order tensors, Qi [19, 20] �rst used and intro-
duced them for symmetric tensors, and Lim [17] independently introduced this notion but
restricted x to be a real vector and � to be a real number. Subsequently, the spectral prop-
erties of nonnegative matrices had been generalized to n-dimensional nonnegative tensors
under various conditions by Chang et al. [3, 4], He and Huang [9], He [10], He et al. [11],
Li et al. [16], Qi [21], Song and Qi [26, 27], Wang et al. [30], Yang and Yang [32, 33] and
references therein. The notion of Z1-eigenvalue was introduced by Chang and Zhang [2]
for higher Markov chains. Now we introduce it to in�nite dimensional generalized Hilbert
tensors.

Let

T1x =

(
kxk2�m

l1
H1

� x
m�1; x 6= �

�; x = �;
(2.5)

where � = (0; 0; � � � ; 0; � � � ). Mei and Song [24] �rst used the concept of the operator T1
induced by a generalized Hilbert tensor H1

� and showed T1 is a bounded and positively
homogeneous operator from l1 into lp (1 < p < 1). Then T1 is refered to as a bounded
and positively homogeneous operator from l2 into l2. So, the concept of Z1-eigenvalue may
be introduced to the in�nite dimensional Hilbert tensor H1

� .

De�nition 2.2. Let H1
� be an mth-order in�nite dimensional generalized Hilbert tensor.

A real number � is called a Z1-eigenvalue of H1
� if there exists a nonzero vector x 2 l2

satisfying
T1x = kxk2�m

l1
H1

� x
m�1 = �x: (2.6)

Such a vector x is called an Z1-eigenvector associated with �.

3 Main Results

Theorem 3.1. Let Hn
� be an mth-order n-dimensional generalized Hilbert tensor. Then

j�j � C(n; �) for all Z1-eigenvalue � of Hn
�;

where [�] is the largest integer not exceeding � and

C(n; �) =

8>>>><
>>>>:
n sin �

n
; � � 1;

n
�
; 1 > � > 0;

n
minf��[�];1+[�]��g

; �mn < � < 0;
n

�mn�a
; � < �mn:
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Proof. For � � 1, it follows from Lemma 2.1 that for all nonzero vector x 2 Rn,

jHn
�x

mj =
�����

nX
i1;i2;��� ;im=0

xi1xi2 � � �xim
i1 + i2 + � � �+ im + �

�����
�

nX
i1;��� ;im=0

jxi1xi2 � � �ximj
i1 + i2 + 0 + � � �+ 0| {z }

m�2

+�

=
nX

i1;i2;��� ;im=0

jxi1 jjxi2j � � � jxim j
i1 + i2 + �

=

 
nX

i1=0

nX
i2=0

jxi1 jjxi2j
i1 + i2 + �

!
nX

i3;i4;��� ;im=0

jxi3jjxi4 j � � � jximj

�
 

nX
i1=0

nX
i2=0

jxi1 jjxi2j
i1 + i2 + 1

!
nX

i3;i4;��� ;im=0

jxi3 jjxi4j � � � jximj

� (kxk22n sin
�

n
)

 
nX

i=0

jxij
!m�2

= kxk22kxkm�2
1 n sin

�

n
:

That is,

jHn
�x

mj � kxk22kxkm�2
1 n sin

�

n
: (3.1)

Since � is a Z1-eigenvalue of Hn
�, then there exists a nonzero vector x such that

Hn
�x

m�1 = �x and kxk1 = 1: (3.2)

Thus, we have,

j�x>xj = jx>(Hn
�x

m�1)j = jHn
�x

mj � kxk22kxkm�2
1 n sin

�

n
;

and then,

j�jkxk22 � kxk22kxkm�2
1 n sin

�

n
:

As a result,

j�j � n sin
�

n
: (3.3)

For all � 2 R n Z� with � < 1, it is obvious that for 1 > � > 0,

min
i1;��� ;im2In

ji1 + i2 + � � �+ im + �j = �:

For �mn < � < 0, there exist some positive integers i01; i
0
2; � � � ; i0m and i001; i

00
2; � � � ; i00m such

that
i01 + i02 + � � �+ i0m = �[�] and i001 + i002 + � � �+ i00m = �[�]� 1;
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and hence,

min
i1;��� ;im2In

ji1 + i2 + � � �+ im + �j = minf�� [�]; �� (�[�]� 1)g:

For � < �mn, we also have,

min
i1;��� ;im2In

ji1 + i2 + � � �+ im + �j = jmn+ �j = �mn� �:

Therefore, we have for � 2 R n Z� with � < 1,

1

ji1 + i2 + � � �+ im + �j � N(�) =

8><
>:

1
�
; 1 > � > 0;

1
minf��[�];1+[�]��g

; �mn < � < 0;
1

�mn�a
; � < �mn:

Then, for all nonzero vector x 2 Rn, we have

jHn
�x

mj =
�����

nX
i1;i2;��� ;im=0

xi1xi2 � � � xim
i1 + i2 + � � �+ im + �

�����
�

nX
i1;��� ;im=0

jxi1xi2 � � �ximj
ji1 + i2 + � � �+ im + �j

� N(�)
nX

i1;i2;��� ;im=0

jxi1 jjxi2j � � � jxim j

= N(�)

 
nX

i=0

jxij
!m

= N(�)kxkm1 :

For each Z1-eigenvalue � of Hn
� with its eigenvector x, from (3.2) and kxk1 �

p
nkxk2, it

follows taht

j�j( 1
n
kxk21) � j�jkxk22 = jHn

�x
mj � N(�)kxkm1 ;

and hence,
j�j � nN(�):

This completes the proof.

When � = 1, the following conclusion of Hilbert tensor is easily obtained. Also see Song
and Qi [25] for the conclusions about H-eigenvalue and Z-eigenvalue of such a tensor.

Corollary 3.2. Let H be an mth-order n-dimensional Hilbert tensor. Then for all Z1-
eigenvalue � of H,

j�j � n sin
�

n
:

Theorem 3.3. Let H1
� be an mth-order in�nite dimensional generalized Hilbert tensor.

Assume � > 0, then for Z1-eigenvalue � of H1
� ,

j�j �M(�) =

(
�

sin��
; 0 < � � 1

2
;

�; � > 1
2
:
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Proof. For x 2 l2, it follows from Lemma 2.2 that

jhx;H1
� x

m�1ij = jH1
� x

mj =
�����

+1X
i1;i2;��� ;im=0

xi1xi2 � � � xim
i1 + i2 + � � �+ im + �

�����
�

+1X
i1;��� ;im=0

jxi1xi2 � � �ximj
i1 + i2 + 0 + � � �+ 0| {z }

m�2

+�

=
+1X

i1;i2;��� ;im=0

jxi1jjxi2j � � � jximj
i1 + i2 + �

=

 
+1X
i1=0

+1X
i2=0

jxi1jjxi2j
i1 + i2 + �

!
+1X

i3;i4;��� ;im=0

jxi3 jjxi4j � � � jximj

=

 
+1X
i1=0

1X
i2=0

jxi1jjxi2j
i1 + i2 + �

! 
+1X
i=0

jxij
!m�2

�M(�)kxk2l2kxkm�2
l1

;

and so,
jhx; T1xij = jhx; kxk2�m

1 H1
� x

m�1ij = kxk2�m
l1

jH1
� x

mj �M(�)kxk2l2 : (3.4)

For each Z1-eigenvalue � of H1
� , there exists a nonzero vector x 2 l2 such that

T1x = kxk2�m
l1

H1
� x

m�1 = �x;

and so,
�kxk2l2 = �hx; xi = hx; kxk2�m

l1
H1

� x
m�1i = kxk2�m

l1
H1

� x
m:

Therefore, we have
j�jkxk2l2 = kxk2�m

l1
jH1

� x
mj �M(�)kxk2l2 ;

and then,
j�j �M(�):

This completes the proof.

When � = 1, the following conclusion of in�nite dimensional Hilbert tensor is easily
obtained.

Corollary 3.4. Let H1 be an mth-order in�nite dimensional Hilbert tensor. Then for all
Z1-eigenvalue � of H1,

j�j � �:

Remark 3.1. (i) In Theorem 3.1, the upper bound of Z1-eigenvalue of Hn
� are showed.

However the upper bound may not be the best. Then which number is its best upper
bounds?

(ii) In Theorem 3.3, the upper bound of Z1-eigenvalue of H1
� are showed for � > 0, then

for � < 0 with � 2 R n Z�, it is unknown whether have similar conclusions or not.
And it is not clear whether the upper bound may be attained or cannot be attained.
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