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Abstract

The aim of this paper is to study the obstacle problem associated with an elliptic operator having degenerate coercivity, and with a low
order term and L1−data. We prove the existence of an entropy solution to the obstacle problem and show its continuous dependence on the
L1−data in W 1,q(Ω) with some q > 1.
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1 Introduction

1.1 Problem setting and main result

Let Ω be a bounded domain in RN (N ≥ 2), 1 < p < +∞ and θ ≥ 0. Given functions g, ψ ∈ W 1,p(Ω) ∩ L∞(Ω) and data
f ∈ L1(Ω), the aim of this paper is to study the obstacle problem for nonlinear non-coercive elliptic equations with lower order
term, governed by the operator

Au = −div
a(x,∇u)

(1 + |u|)θ(p−1)
+ b|u|r−2u, (1)

where b > 0 is a constant, and a : Ω× RN → RN is a Carathéodory function, satisfying the following conditions:

a(x, ξ) · ξ ≥ α|ξ|p, (2)
|a(x, ξ)| ≤ β(j(x) + |ξ|p−1), (3)
(a(x, ξ)− a(x, η))(ξ − η) > 0, (4)

|a(x, ξ)− a(x, ζ)| ≤ γ

{
|ξ − ζ|p−1, if 1 < p < 2

(1 + |ξ|+ |ζ|)p−2|ξ − ζ|, if p ≥ 2
, (5)

for almost every x in Ω, and for every ξ, η, ζ in RN with ξ 6= η, where α, β, γ > 0 are constants, and j is a nonnegative
function in Lp

′
(Ω).

If f has a fine regularity, i.e., f ∈ W−1,p′(Ω), the obstacle problem corresponding to (f, ψ, g) can be formulated in terms of
the inequality∫

Ω

a(x,∇u)

(1 + |u|)θ(p−1)
· ∇(u− v)dx+

∫
Ω

b|u|r−2u(u− v)dx ≤
∫

Ω

f(u− v)dx, ∀v ∈ Kg,ψ ∩ L∞(Ω), (6)
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whenever 1 ≤ r < p and the convex subset

Kg,ψ = {v ∈W 1,p(Ω); v − g ∈W 1,p
0 (Ω), v ≥ ψ, a.e. in Ω}

is nonempty. However, if f ∈ L1(Ω), (6) is not well-defined, and following [1,3,6] etc., we are led to the more general definition
of a solution to the obstacle problem, using the truncation function

Ts(t) = max{−s,min{s, t}}, s, t ∈ R.

Definition 1 An entropy solution of the obstacle problem associated corresponding to operator A and functions (f, ψ, g) with
f ∈ L1(Ω) is a measurable function u such that u ≥ ψ a.e. in Ω, a(x,∇u)

(1+|u|)θ(p−1) ∈ (L1(Ω))N , |u|r−1 ∈ L1(Ω), and, for every

s > 0, Ts(u)− Ts(g) ∈W 1,p
0 (Ω) and∫

Ω

a(x,∇u)

(1 + |u|)θ(p−1)
· ∇(Ts(u− v))dx+

∫
Ω

b|u|r−2uTs(u− v)dx ≤
∫

Ω

fTs(u− v)dx, ∀v ∈ Kg,ψ ∩ L∞(Ω). (7)

Observe that no global integrability condition is required on u nor on its gradient in the definition. As pointed out in [3,9],
if Ts(u) ∈ W 1,p(Ω) for all s > 0, then there exists a unique measurable vector field U : Ω → RN such that ∇(Ts(u)) =
χ{|u|<s}U a.e. in Ω, s > 0, which, in fact, coincides with the standard distributional gradient of∇u whenever u ∈W 1,1(Ω).

Before stating the main result, we make some basic assumptions throughout this paper, i.e., without special statements, we
always assume that

2− 1

N
< p < N, 1 ≤ r < p, 0 ≤ θ < min

{
N

N − 1
− 1

p− 1
,
p− r
p− 1

}
, b > 0,

and ψ, g ∈ W 1,p(Ω) ∩ L∞(Ω) with (ψ − g)+ ∈ W 1,p
0 (Ω) such that Kg,ψ 6= ∅. The following theorem is the main result

obtained in this paper.

Theorem 1 Let f ∈ L1(Ω). Then there exists at least one entropy solution u of the obstacle problem associated with (f, ψ, g).
In addition, u depends continuously on f , i.e., if fn → f in L1(Ω) and un is a solution to the obstacle problem associated with
(fn, ψ, g), then

un → u in W 1,q(Ω),∀q ∈


(N(r−1)
N+r−1 ,

N(p−1)(1−θ)
N−1−θ(p−1)

)
, if 2N−1

N−1 ≤ r < p,

(1, N(p−1)(1−θ)
N−1−θ(p−1) ), if 1 ≤ r < min{ 2N−1

N−1 , p}.
(8)

1.2 Some comments and remarks

Consider the Dirichlet boundary value problem having a form−div |∇u|p−2∇u
(1+|u|)θ(p−1) + bu = f, in Ω,

u = 0, on ∂Ω,
(9)

with p > 1, θ ∈ (0, 1], b ≥ 0, f ∈ L1(Ω). The item |∇u|p−2∇u
(1+|u|)θ(p−1) is not coercive if u is very large. Due to this, the classical

methods used to prove the existence of a solution for elliptic equations, i.e., [15], cannot be applied even if b = 0 and the data
f is regular. Moreover, |∇u|

p−2∇u
(1+|u|)θ(p−1) and u and f are only in L1(Ω), not in W−1,p′(Ω). All these characteristics prevent us

employing the duality argument [18] or nonlinear monotone operator theory [19] directly.

To overcome these difficulties, cutting the noncoercivity term and using the technique of approximation, a pseudomonotone
and coercive differential operator on W 1,p

0 (Ω) can be applied to establish a priori estimates on approximating solutions. As
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a result, existence of solutions, or entropy solutions, can be obtained by taking limitation for f ∈ Lm(Ω),m ≥ 1 and b > 0
due to the almost everywhere convergence for the gradients of the approximating solutions, see e.g., [4,7,10–12,16] ( see also
[1,2,8,13,14,17] for b = 0).

Motivated by the study on the non-coercive elliptic equations (9), we consider in this paper the obstacle problem governed by
(1) and functions (f, ψ, g) with f ∈ L1(Ω). We prove the existence of an entropy solution and show its continuous dependence
on the L1−data in W 1,q(Ω) with some q ∈ (1, p).

In the following, we give some remarks on our main result and inequalities that will be needed in the proofs. Some notations
are provided in the end of this subsection.

Remark 1 (i) 0 ≤ θ < min

{
N
N−1−

1
p−1 ,

p−r
p−1

}
⇒ r−1 < (1−θ)(p−1) < N(p−1)(1−θ)

N−1−θ(p−1) . Therefore Theorem 1 guarantees

|u|r−1 ∈ L1(Ω), and the second integration in (7) makes sense.

(ii) We will show that a(x,∇u)
(1+|u|)θ(p−1) ∈ (L1(Ω))N in Proposition 4. Therefore, the first integration in (7) makes sense.

(ii)
(
N(r−1)
N+r−1 ,

N(p−1)(1−θ)
N−1−θ(p−1)

)
⊂
(

1, N(p−1)(1−θ)
N−1−θ(p−1)

)
if 2N−1

N−1 ≤ r < p. Indeed, θ < p−r
p−1 + p(r−1)

N(p−1) ⇔
N(p−1)(1−θ)
N−1−θ(p−1) >

N(r−1)
N+r−1 ,

while 2N−1
N−1 ≤ r gives N(r−1)

N+r−1 ≥ 1. Thus un → u in W 1,q(Ω) for all q ∈
(
1, N(p−1)(1−θ)

N−1−θ(p−1)

)
.

(iii) r − 1 < Nq
N−q . Indeed, by 1 ≤ r < 2N−1

N−1 , there holds r − 1 < N
N−1 < Nq

N−q for any q > 1, particularly, for

q ∈ (1, N(p−1)(1−θ)
N−1−θ(p−1) ). For r ≥ 2N−1

N−1 , it suffices to note that q > N(r−1)
N+r−1 ⇔ r − 1 < Nq

N−q .

(iv) q < p. Indeed, 0 ≤ θ < N
N−1 −

1
p−1 <

N−1
p−1 ⇒

N(p−1)(1−θ)
N−1−θ(p−1) < p.

Remark 2 Checking proofs of this paper, one may find that, for b = 0, (8) holds with

un → u in W 1,q(Ω),∀q ∈
(

1,
N(p− 1)(1− θ)
N − 1− θ(p− 1)

)
. (10)

Indeed, it suffices to set r = 1 in the proofs.

Notations

‖u‖p = ‖u‖Lp(Ω) is the norm of Lp(Ω), where 1 ≤ p ≤ ∞. ‖u‖1,p = ‖u‖W 1,p(Ω) is the norm ofW 1,p(Ω), where 1 < p <∞.
p′ = p

p−1 with 1 < p < ∞. u+ = max{u, 0}, u− = (−u)+, if u is a real-valued function. C is a constant, which may be
different from each other. {u > s} = {x ∈ Ω;u(x) > s}. {u ≤ s} = Ω \ {u > s}. {u < s} = {x ∈ Ω;u(x) < s}.
{u ≥ s} = Ω \ {u < s}. {u = s} = {x ∈ Ω;u(x) = s}. {t ≤ u < s} = {u ≥ t} ∩ {u < s}. LN is the Lebesgue measure of
RN . |E| = LN (E) for a measurable set E.

2 Lemmas on entropy solutions

It is worthy to note that, for any smooth function fn, there exists at least one solution to the obstacle problem (6). Indeed, one
can proceed exactly as in [1,12] to obtain W 1,p−solutions due to the assumptions (2)-(4) on a and r− 1 < p. These solutions,
in particular, are also entropy solutions. In this section we establish several auxiliary results on convergence of sequences of
entropy solutions when fn → f in L1(Ω).

Lemma 2 Let v0 ∈ Kg,ψ ∩ L∞(Ω), and let u be an entropy solution of the obstacle problem associated with (f, ψ, g). Then,
we have∫

{|u|<t}

|∇u|p

(1 + |u|)θ(p−1)
dx ≤ C(1 + tr), ∀t > 0,

where C is a positive constant depending only on α, β, p, r, b, ‖j‖p′ , ‖∇v0‖p, ‖v0‖∞, and ‖f‖1.
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Proof Take v0 as a test function in (7). For t large enough such that t− ‖v0‖∞ > 0, we get∫
{|v0−u|<t}

a(x,∇u) · ∇u
(1 + |u|)θ(p−1)

dx ≤
∫
{|v0−u|<t}

a(x,∇u) · ∇v0

(1 + |u|)θ(p−1)
dx+

∫
Ω

(f − b|u|r−2u)Tt(u− v0)dx. (11)

We estimate each integration in the right-hand side of (11). It follows from (3) and Young’s inequality with ε > 0 that∫
{|v0−u|<t}

a(x,∇u) · ∇v0

(1 + |u|)θ(p−1)
dx ≤

∫
{|v0−u|<t}

β(|j|+ |∇u|p−1) · |∇v0|
(1 + |u|)θ(p−1)

dx

≤
∫
{|v0−u|<t}

βε(|j|p′ + |∇u|p)
(1 + |u|)θ(p−1)

dx+

∫
{|v0−u|<t}

βC(ε)|∇v0|p

(1 + |u|)θ(p−1)
dx

≤ε
∫
{|v0−u|<t}

|∇u|p

(1 + |u|)θ(p−1)
dx+ C(‖j‖p

′

p′ + ‖∇v0‖pp). (12)

−
∫

Ω

b|u|r−2uTt(u− v0)dx = −
∫
{|u−v0|≤t}

b|u|r−2uTt(u− v0)dx−
∫
{|u−v0|>t}

b|u|r−2uTt(u− v0)dx. (13)

Note that on the set {|u− v0| ≤ t},

||u|r−2uTt(u− v0)| ≤ t|t+ ‖v0‖∞|r−1 ≤ C(1 + tr), (14)

where C is a constant depending only on r, ‖v0‖∞.
On the set {|u− v0| > t}, we have |u| ≥ t− ‖v0‖∞ > 0, thus u and Tt(u− v0) have the same sign. It fllows

−
∫
{|u−v0|>t}

b|u|r−2uTt(u− v0)dx ≤ 0. (15)

Combining (13)-(15), we get

−
∫

Ω

b|u|r−2uTt(u− v0)dx ≤ C(1 + tr). (16)

∫
{|v0−u|<t}

|∇u|p

(1 + |u|)θ(p−1)
dx ≤C(‖j‖p

′

p′ + ‖∇v0‖pp + t‖f‖1 + 1 + tr)

≤C(1 + tr). (17)

Replacing t with t+ ‖v0‖∞ in (17) and noting that {|u| < t} ⊂ {|v0 − u| < t+ ‖v0‖∞}, one may obtain the desired result.�

In the rest of this section, let {un} be a sequence of entropy solutions of the obstacle problem associated with (fn, ψ, g) and
assume that

fn → f in L1(Ω) and ‖fn‖1 ≤ ‖f‖1 + 1.

Lemma 3 There exists a measurable function u such that un → u in measure, and Tk(un) ⇀ Tk(u) weakly in W 1,p(Ω) for
any k > 0. Thus Tk(un)→ Tk(u) strongly in Lp(Ω) and a.e. in Ω.

Proof Let s, t and ε be positive numbers. One may verify that for every m,n ≥ 1,

LN ({|un − um| > s}) ≤LN ({|un| > t}) + LN ({|um| > t}) + LN ({|Tk(un)− Tk(um)| > s}), (18)
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and

LN ({|un| > t}) =
1

tp

∫
{|un|>t}

tpdx ≤ 1

tp

∫
Ω

|Tt(un)|pdx. (19)

Due to v0 = g + (ψ − g)+ ∈ Kg,ψ ∩ L∞(Ω), by Lemma 2, one has∫
Ω

|∇Tt(un)|pdx =

∫
{|un|<t}

|∇un|pdx ≤ C(1 + t)θ(p−1)(1 + tr). (20)

Note that Tt(un) − Tt(g) ∈ W 1,p
0 (Ω). By (19), (20) and Poincaré’s inequality, for every t > ‖g‖∞ and for some positive

constant C independent of n and t, there holds

LN ({|un| > t}) ≤ 1

tp

∫
Ω

|Tt(un)|pdx

≤2p−1

tp

∫
Ω

|Tt(un)− Tt(g)|pdx+
2p−1

tp
‖g‖pp

≤C
tp

∫
Ω

|∇Tt(un)−∇Tt(g)|pdx+
2p−1

tp
‖g‖pp

≤C
tp

∫
Ω

|∇Tt(un)|pdx+
C

tp
‖g‖p1,p

≤C(1 + tr+θ(p−1))

tp
.

Since 0 ≤ θ < p−r
p−1 , there exists tε > 0 such that

LN ({|un| > t}) < ε

3
, ∀ t ≥ tε, ∀ n ≥ 1. (21)

Now we have as in (19)

LN ({|Ttε(un)− Ttε(um)| > s}) =
1

sp

∫
{|Ttε (un)−Ttε (um)|>s}

spdx ≤ 1

sp

∫
Ω

|Ttε(un)− Ttε(um)|pdx. (22)

Using (20) and the fact that Tt(un)−Tt(g) ∈W 1,p
0 (Ω) again, we see that {Ttε(un)} is a bounded sequence inW 1,p(Ω). Thus,

up to a subsequence, {Ttε(un)} converges strongly in Lp(Ω). Taking into account (22), there exists n0 = n0(tε, s) ≥ 1 such
that

LN ({|Ttε(un)− Ttε(um)| > s}) < ε

3
, ∀ n,m ≥ n0. (23)

Combining (18), (21) and (23), we obtain

LN ({|un − um| > s}) < ε, ∀ n,m ≥ n0.

Hence {un} is a Cauchy sequence in measure, and therefore there exists a measurable function u such that un → u in measure.
The remainder of the lemma is a consequence of the fact that {Tk(un)} is a bounded sequence in W 1,p(Ω). �

Proposition 4 There exists a subsequence of {un} and a measurable function u such that for each q given in (8), we have

un → u strongly in W 1,q(Ω).

If moreover 0 ≤ θ < min{ 1
N−p+1 ,

N
N−1 −

1
p−1 ,

p−r
p−1}, then

a(x,∇un)

(1 + |un|)θ(p−1)
→ a(x,∇u)

(1 + |u|)θ(p−1)
strongly in (L1(Ω))N .
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To prove Proposition 4, we need two preliminary lemmas.

Lemma 5 There exists a subsequence of {un} and a measurable function u such that for each q given in (8), we have un ⇀
u weakly in W 1,q(Ω), and un → u strongly in Lq(Ω).

Proof Let k > 0 and n ≥ 1. DefineDk = {|un| ≤ k} andBk = {k ≤ |un| < k+1}. Using Lemma 2 with v0 = g+(ψ−g)+,
we get∫

Dk

|∇un|p

(1 + |un|)θ(p−1)
dx ≤ C(1 + kr), (24)

where C is a positive constant depending only on α, β, b, p, r, ‖j‖p′ , ‖f‖1, ‖∇v0‖p, and ‖v0‖∞.

Using the function Tk(un) for k > {‖g‖∞, ‖ψ‖∞}, as a test function for the problem associated with (fn, ψ, g), we obtain∫
Ω

a(x,∇un) · ∇(T1(un − Tk(un)))

(1 + |un|)θ(p−1)
dx+

∫
Ω

b|un|r−2unT1(un − Tk(un))dx ≤
∫

Ω

fnT1(un − Tk(un))dx,

which and (2) give∫
Bk

α|∇un|p

(1 + |un|)θ(p−1)
dx+

∫
Ω

b|un|r−2unT1(un − Tk(un))dx ≤ ‖fn‖1 ≤ ‖f‖1 + 1.

Note that on the set {|un| ≥ k + 1}, un and T1(un − Tk(un)) have the same sign. Then∫
Ω

|un|r−2unT1(un − Tk(un))dx =

∫
Dk

|un|r−2unT1(un − Tk(un))dx+

∫
Bk

|un|r−2unT1(un − Tk(un))dx

+

∫
{|un|≥k+1}

|un|r−2unT1(un − Tk(un))dx

≥
∫
Bk

|un|r−2unT1(un − Tk(un))dx.

Thus we have∫
Bk

α|∇un|p

(1 + |un|)θ(p−1)
dx+ ≤‖f‖1 + 1−

∫
Bk

b|un|r−2unT1(un − Tk(un))dx

≤‖f‖1 + 1 +

∫
Bk

b|un|r−1dx

≤C
(

1 +

(∫
Bk

|un|q
∗
dx
) r−1

q∗

|Bk|1−
r−1
q∗

)
, (25)

where q is given in (8) and q∗ = Nq
N−q .

Let s = qθ(p−1)
p . Note that q < p and ps

p−q < q∗. For ∀k > 0, we estimate
∫
Bk
|∇un|qdx as follows

∫
Bk

|∇un|qdx =

∫
Bk

|∇un|q

(1 + |un|)s
· (1 + |un|)sdx

≤
(∫

Bk

|∇un|p

(1 + |un|)θ(p−1)
dx
) q
p
(∫

Bk

(1 + |un|)
ps
p−q dx

) p−q
p

≤C
(∫

Bk

|∇un|p

(1 + |un|)θ(p−1)
dx
) q
p
(
|Bk|

p−q
p +

(∫
Bk

|un|
ps
p−q dx

) p−q
p
)
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≤C
(∫

Bk

|∇un|p

(1 + |un|)θ(p−1)
dx
) q
p
(
|Bk|

p−q
p +

(∫
Bk

|un|q
∗
dx
) s
q∗

|Bk|
p−q
p −

s
q∗

)
≤C
(
|Bk|

p−q
p + |Bk|

p−q
p −

s
q∗

(∫
Bk

|un|q
∗
dx
) s
q∗

+ |Bk|1−p1
(∫

Bk

|un|q
∗
dx
)p1

+ |Bk|1−p2
(∫

Bk

|un|q
∗
dx
)p2)

by (25)

=C

(
|Bk|

p−q
p + |Bk|

p−q
p −

s
q∗

(∫
Bk

|un|q
∗
dx
) s
q∗

+ |Bk|1−p1−C1 |Bk|C1

(∫
Bk

|un|q
∗
dx
)p1

+ |Bk|1−p2−C2 |Bk|C2

(∫
Bk

|un|q
∗
dx
)p2)

,

where p1 = q
p
r−1
q∗ , p2 = s

q∗ + q
p
r−1
q∗ , C1 and C2 are positive constants to be chosen later.

Note that θ < p−r
p−1 , it follows

θ(p− 1)

p
+
r − 1

p
<
p− 1

p
< 1− 1

N
= 1− 1

q
+

1

q∗
.

Thus

θq(p− 1)

p
+
q(r − 1)

p
+ 1 < q +

q

q∗
⇔ s+

q(r − 1)

p
+ 1 < q +

q

q∗
⇔ p2 +

1− p2

q∗ + 1
<

q

q∗
.

Note that p1 < p2 < 1. Then for i = 1, 2, we always have

pi +
1− pi
q∗ + 1

<
q

q∗
< 1.

From this, we may find positive Ci(i = 1, 2) such that

pi +
1− pi
q∗ + 1

< pi + Ci <
q

q∗
< 1, i = 1, 2. (26)

It follows

1− pi
q∗ + 1

< Ci ⇔ 1− pi − Ci < Ciq
∗, i = 1, 2,

which implies

Ciαiq
∗ =

Ciq
∗

1− pi − Ci
> 1, i = 1, 2, (27)

with αi = 1
1−pi−Ci > 1, i = 1, 2. Let βi = 1

pi+Ci
> 1, i = 1, 2. Then we have 1

αi
+ 1

βi
= 1(i = 1, 2).

Since |Bk| ≤ 1
kq∗
∫
Bk
|un|q

∗
dx, |Bk|1−p1−C1 ≤ |Ω|1−p1−C1 and |Bk|1−p2−C2 ≤ |Ω|1−p2−C2 , we have for k ≥ k0 ≥ 1

∫
Bk

|∇un|qdx ≤
C

kq
∗
(
p−q
p −

s
q∗

)(∫
Bk

|un|q
∗
dx
) p−q

p

+
C

kq∗C1

(∫
Bk

|un|q
∗
dx
)p1+C1

+
C

kq∗C2

(∫
Bk

|un|q
∗
dx
)p2+C2

.
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Summing up from k = k0 to k = K and using Hölder’s inequality, one has

K∑
k=k0

∫
Bk

|∇un|qdx ≤C
( K∑
k=k0

1

kq
∗( p−qp −

s
q∗ ) pq

) q
p

·
( K∑
k=k0

∫
Bk

|un|q
∗
dx
) p−q

p

+ C

( K∑
k=k0

1

kq∗C1α1

) 1
α1

·
( K∑
k=k0

(∫
Bk

|un|q
∗
dx
)β1(p1+C1)) 1

β1

+ C

( K∑
k=k0

1

kq∗C2α2

) 1
α2

·
( K∑
k=k0

(∫
Bk

|un|q
∗
dx
)β2(p2+C2)) 1

β2

=C

( K∑
k=k0

1

kq
∗( p−qp −

s
q∗ ) pq

) q
p

·
( K∑
k=k0

∫
Bk

|un|q
∗
dx
) p−q

p

+ C

( K∑
k=k0

1

kq∗C1α1

) 1
α1

·
( K∑
k=k0

∫
Bk

|un|q
∗
dx
)p1+C1

+ C

( K∑
k=k0

1

kq∗C2α2

) 1
α2

·
( K∑
k=k0

∫
Bk

|un|q
∗
dx
)p2+C2

. (28)

Note that∫
{|un|≤K}

|∇un|qdx =

∫
Dk0

|∇un|qdx+

K∑
k=k0

∫
Bk

|∇un|qdx. (29)

To estimate the first integral in the right-hand side of (29), we compute by using Hölder’s inequality and (24), obtaining

∫
Dk0

|∇un|qdx ≤
(∫

Dk0

|∇un|p

(1 + |un|)θ(p−1)
dx
) q
p
(∫

Dk0

(1 + |un|)
ps
p−q dx

) p−q
p

≤C, (30)

where C depending only on α, β, b, p, θ, ‖j‖p′ , ‖f‖1, ‖∇v0‖p, ‖v0‖∞ and k0.

Note that
K∑

k=k0

1

k
q∗( p−q

p
− s
q∗ )

p
q

and
K∑

k=k0

1
kq
∗Ciαi

converge due to the fact that q∗(p−qp −
s
q∗ )pq > 1 and q∗Ciαi > 1 by (27),

respectively. Combining (28)-(30), we get for k0 large enough

∫
{|un|≤K}

|∇un|qdx ≤C + C

(∫
{|un|≤K}

|un|q
∗
dx
) p−q

p

+ C

(∫
{|un|≤K}

|un|q
∗
dx
)p1+C1

+ C

(∫
{|un|≤K}

|un|q
∗
dx
)p2+C2

. (31)

Since p > q, TK(un) ∈W 1,q(Ω), TK(g) = g ∈W 1,q(Ω) for K > ‖g‖∞. Hence TK(un)−g ∈W 1,q
0 (Ω). Using the Sobolev

embedding W 1,q
0 (Ω) ⊂ Lq∗(Ω) and Poincaré inequality, we obtain

‖TK(un)‖qq∗ ≤2q−1(‖TK(un)− g‖qq∗ + ‖g‖qq∗)
≤C(‖∇(TK(un)− g)‖qq + ‖g‖qq∗)
≤C(‖∇TK(un)‖qq + ‖∇g‖qq + ‖g‖qq∗)

≤C
(

1 +

∫
{|un|≤K}

|∇un|qdx
)
. (32)
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Using the fact that∫
{|un|≤K}

|un|q
∗
dx ≤

∫
{|un|≤K}

|TK(un)|q
∗
dx ≤ ‖TK(un)‖q

∗

q∗ , (33)

we obtain from (31)-(32),

∫
{|un|≤K}

|∇un|qdx ≤C + C

(
1 +

∫
{|un|≤K}

|∇un|qdx
) q∗

q
p−q
p

+ C

(
1 +

∫
{|un|≤K}

|∇un|qdx
)(p1+C1) q

∗
q

+ C

(
1 +

∫
{|un|≤K}

|∇un|qdx
)(p2+C2) q

∗
q

. (34)

Note that p < N ⇔ q∗

q
p−q
p < 1 and (pi+Ci)

q∗

q < 1 by (26). It follows from (34) that for k0 large enough,
∫
{|un|≤K} |∇un|

qdx

is bounded independently of n and K. Using (32) and (33), we deduce that
∫
{|un|≤K} |un|

q∗dx is also bounded independently
of n and K. Letting K → ∞, we deduce that ‖∇un‖q and ‖un‖q∗ are uniformly bounded independently of n. Particularly,
un is bounded in W 1,q(Ω). Therefore, there exists a subsequence of {un} and a function v ∈ W 1,q(Ω) such that un ⇀ v
weakly in W 1,q(Ω), un → v strongly in Lq(Ω) and a.e. in Ω. By Lemma 3, un → u in measure in Ω, we conclude that u = v
and u ∈W 1,q(Ω). �

Lemma 6 There exists a subsequence of {un} and a measurable function u such that∇un converges almost everywhere in Ω
to ∇u.

Proof The proof is quite similar to Theorem 4.1 in [1], which can be also found in [5]. Here we sketch only the main steps due
to slight modifications. For r2 > 1, let λ = q

pr2
< 1, where q is the same as in Lemma 5. Define A(x, u, ξ) = a(x,ξ)

(1+|u|)θ(p−1)

(for the sake of simplicity, we omit the dependence of A(x, u, ξ) on x) and

I(n) =

∫
Ω

((A(un,∇un)−A(un,∇u)) · ∇(un − u))λdx.

We fix k > 0 and split the integral in I(n) on the sets {|u| > k} and {|u| ≤ k}, obtaining

I1(n, k) =

∫
{|u|>k}

((A(un,∇un)−A(un,∇u)) · ∇(un − u))λdx,

and

I2(n, k) =

∫
{|u|≤k}

((A(un,∇un)−A(un,∇u)) · ∇(un − u))λdx.

For I2(n, k), one has

I2(n, k) ≤ I3(n, k) =

∫
Ω

((An(un,∇un)−An(un,∇Tk(u))) · ∇(un − Tk(u)))λdx.

Fix h > 0 and split I3(n, k) on the sets {|un − Tk(u)| > h} and {|un − Tk(u)| ≤ h}, obtaining

I4(n, k, h) =

∫
{|un−Tk(u)|>h}

((An(un,∇un)−An(un,∇Tk(u))) · ∇(un − Tk(u)))λdx,

and

I5(n, k, h) =

∫
{|un−Tk(u)|≤h}

((An(un,∇un)−An(un,∇Tk(u))) · ∇(un − Tk(u)))λdx
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=

∫
Ω

((An(un,∇un)−An(un,∇Tk(u))) · ∇Th(un − Tk(u)))λdx

≤|Ω|1−λ
(∫

Ω

(An(un,∇un)−An(un,∇Tk(u))) · ∇Th(un − Tk(u))dx
)λ

=|Ω|1−λ
(
I6(n, k, h)

)λ
.

For I6(n, k, h), it can be split as the difference I7(n, k, h)− I8(n, k, h)
where

I7(n, k, h) =

∫
Ω

A(un,∇un) · ∇Th(un − Tk(u))dx,

and

I8(n, k, h) =

∫
Ω

A(un,∇Tk(u)) · ∇Th(un − Tk(u))dx.

Note that |∇un| is bounded in Lq(Ω) and λpr2 = q. Thanks to Lemma 3 and Lemma 5, one may get in the same way as
Theorem 4.1 in [1] that

lim
k→∞

lim sup
n→∞

I1(n, k) = 0, lim
h→∞

lim sup
k→∞

lim sup
n→∞

I4(n, k, h) = 0, lim
n→∞

I8(n, k, h) = 0.

For I7(n, k, h), let k > max{‖g‖∞, ‖ψ‖∞} and n ≥ h+ k. Take Tk(u) as a test function for (7), obtaining

I7(n, k, h) ≤
∫

Ω

fnTh(un − Tk(u))dx+

∫
Ω

b|un|r−2unTh(un − Tk(u))dx.

Note that r − 1 < q∗, and
∫

Ω
|un|q

∗
dx is uniformly bounded (see the proof of Lemma 5), thus |un| converges strongly in

L1(Ω). Therefore we have

lim
n→∞

∫
Ω

|un|r−2unTh(un − Tk(u))dx =

∫
Ω

|u|r−2uTh(u− Tk(u))dx.

Then using the strong convergence of fn in L1(Ω), one has

lim
n→∞

I7(n, k, h) ≤
∫

Ω

−fTh(u− Tk(u))dx+

∫
Ω

b|u|r−2uTh(u− Tk(u))dx.

It follows

lim
k→∞

lim
n→∞

I7(n, k, h) ≤ 0.

Putting together all the limitations and noting that I(n) ≥ 0, we have

lim
n→∞

I(n) = 0.

The same arguments as [1] give that, up to subsequence, ∇un(x)→ ∇u(x) a.e.. �

Proof of Proposition 4 We shall prove that ∇un converges strongly to ∇un in Lq(Ω) for each q, being given by (8). To do
that,we will apply Vitalli’s Theorem, using the fact that by Lemma 5,∇un is bounded in Lq(Ω) for each q given by (8). So let
s ∈ (q, N(p−1)(1−θ)

N−1−θ(p−1) ) and E ⊂ Ω be a measurable set. Then, we have by Hölder’s inequality.

∫
E

|∇un|qdx ≤
(∫

E

|∇un|rdx
) q
s

· |E|
s−q
s ≤ C|E|

s−q
s → 0
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uniformly in n, as |E| → 0. From this and Lemma 6, we deduce that∇un converges strongly to∇u in Lq(Ω).

Now assume that 0 ≤ θ < min{ 1
N−p+1 ,

N
N−1 −

1
p−1 ,

p−r
p−1}. Note that since ∇un converges to ∇u a.e. in Ω, to prove the

convergence

a(x,∇un)

(1 + |un|)θ(p−1)
→ a(x,∇u)

(1 + |u|)θ(p−1)
strongly in (L1(Ω))N ,

it suffices, thanks to Vitallis Theorem, to show that for every measurable subset E ⊂ Ω,
∫
E

∣∣ a(x,∇un)
(1+|un|)θ(p−1)

∣∣dx converges to 0

uniformly in n, as |E| → 0. Note that p − 1 < N(p−1)(1−θ)
N−1−θ(p−1) ) by assumptions. For any q ∈ (p − 1, N(p−1)(1−θ)

N−1−θ(p−1) )), we deduce
by Hölder’s inequality∫

E

∣∣∣∣ a(x,∇un)

(1 + |un|)θ(p−1)

∣∣∣∣dx ≤β ∫
E

(j + |∇un|p−1)dx

≤β‖j‖p′ |E|
1
p + β

(∫
E

|∇un|qdx
) q
p−1

|E|
q−p+1
q

→0 uniformly in n as |E| → 0.

�

Lemma 7 There exists a subsequence of {un} such that for all k > 0

a(x,∇Tk(un))

(1 + |Tk(un)|)θ(p−1)
→ a(x,∇Tk(u))

(1 + |Tk(u)|)θ(p−1)
strongly in (L1(Ω))N .

Proof Let k be a positive number. It is well known that if a sequence of measurable functions {un} with uniformly bound-
edness in Ls(Ω)(s > 1) converges in measure to u, then, un converges strongly to u in L1(Ω). First note that the sequence
{ a(x,∇Tk(un))

(1+|Tk(un)|)θ(p−1) } is bounded in Lp
′
(Ω). Indeed, we have by (3) and Lemma 2,

∫
Ω

∣∣∣∣ a(x,∇Tk(un))

(1 + |Tk(un)|)θ(p−1)

∣∣∣∣p′dx ≤β‖j‖p′p′ + β

∫
Ω

|∇Tk(un)|p

(1 + |Tk(un)|)θp
dx

≤β‖j‖p
′

p′ + β

∫
Ω

|∇Tk(un)|p

(1 + |Tk(un)|)θ(p−1)
dx

≤C.

Next, it suffices to show that there exists a subsequence of {un} such that

a(x,∇Tk(un))

(1 + |Tk(un)|)θ(p−1)
→ a(x,∇Tk(u))

(1 + |Tk(u)|)θ(p−1)
in measure.

Note that un, u ∈ W 1,q(Ω), where q is the same as in Proposition 4. The a.e. convergence of un to u and the fact that
∇un → ∇u in measure imply that

∇Tk(un)→ ∇Tk(u) in measure.

Let s, t be positive numbers and write∇Au = a(x,∇u)
(1+|u|)θ(p−1) . Define

En = {|∇ATk(un)−∇ATk(u)| > s},
E1
n = {|∇Tk(un)| > t},

E2
n = {|∇Tk(u)| > t},
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E3
n = En ∩ {|∇Tk(un)| ≤ t} ∩ {|∇Tk(u)| ≤ t}.

Note thatEn ⊂ E1
n∪E2

n∪E3
n for each n ≥ 1. Using the fact by Lemma 5, the sequence {un} and the fucntion u are uniformly

bounded in W 1,q(Ω), we obtain

LN (E1
n) ≤ 1

tq

∫
Ω

|∇Tk(un)|qdx ≤ 1

tq

∫
Ω

|∇un|qdx ≤
C

tq
,

LN (E2
n) ≤ 1

tq

∫
Ω

|∇Tk(u)|qdx ≤ 1

tq

∫
Ω

|∇u|qdx ≤ C

tq
.

We deduce that for any ε > 0 there exists tε > 0 such that

LN (E1
n) + LN (E2

n) <
ε

3
, ∀t ≥ tε, ∀n ≥ 1. (35)

Note that for a ≥ b ≥ 0, γ ≥ 0, we have the following inequality∣∣∣∣ 1

(1 + a)τ
− 1

(1 + b)τ

∣∣∣∣ =

∣∣∣∣ τ(b− a)

(1 + c)1+τ

∣∣∣∣ ≤ τ |b− a| for some c ∈ [b, a].

We deduce from (5) and (3) that in E3
n

s <|∇ATk(un)−∇ATk(u)|

=

∣∣∣∣a(x,∇Tk(un))− a(x,∇Tk(u))

(1 + |Tk(un)|)θ(p−1)
+

(
1

(1 + |Tk(un)|)θ(p−1)
− 1

(1 + |Tk(u)|)θ(p−1)

)
a(x,∇Tk(u))

∣∣∣∣
≤θ(p− 1)|Tk(un)− Tk(u)| · β(j + |∇Tk(u)|p−1)

+ γ

{
|∇Tk(un)−∇Tk(u)|p−1, if 1 < p < 2

|∇Tk(un)−∇Tk(u)|(1 + |∇Tk(un)|+ |∇Tk(u)|)p−2, if p ≥ 2

≤C0j|Tk(un)− Tk(u)|+ C0(1 + tp−1 + tp−2)(|Tk(un)− Tk(u)|+ |∇Tk(un)−∇Tk(u)|),

which leads to E3
n ⊂ F1 ∪ F2, with

F1 = {j|Tk(un)− Tk(u)| > s

2C0
},

F2 =

{
|Tk(un)− Tk(u)|+ |∇Tk(un)−∇Tk(u)| > s

2C0(1 + tp−1 + tp−2)

}
.

In F1, we have

LN (F1) =
2C0

s

∫
F1

s

2C0
dx <

2C0

s

∫
F1

j|Tk(un)− Tk(u)|dx.

By Lemma 3, we deduce that there exists n0 = n0(S,C0, ε) such that

LN (F1) ≤ ε

3
, ∀ n ≥ n0. (36)

For F2, note that F 2 ⊂ F3 ∪ F4, with

F3 =

{
|Tk(un)− Tk(u)| > s

4C0(1 + tp−1 + tp−2)

}
,

F4 =

{
|∇Tk(un)−∇Tk(u)| > s

4C0(1 + tp−1 + tp−2)

}
.
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Using the convergence in measure of ∇Tk(un) to ∇Tk(u) and Tk(un) to Tk(u), for t = tε, we obtain the existence of
n1 = n1(s, ε) ≥ 1 such that

LN (F2) ≤ LN (F3) + LN (F4) <
ε

3
, ∀ n ≥ n1. (37)

Combining (35), (36) and (37), we obtain

LN ({|∇ATk(un)−∇ATk(u)| > s}) < ε, ∀ n ≥ max{n0, n1}.

Hence the sequence {∇ATk(un)} converges in measure to∇ATk(u) and the lemma follows. �

3 Proof of the main result

Now we have gathered all the lemmas needed to prove the existence of an entropy solution to the obstacle problem associated
with (f, ψ, g). In this part, let fn be a sequence of smooth functions converging strongly to f in L1(Ω), with ‖fn‖1 ≤ ‖f‖1 +1.
We consider the sequence of approximated obstacle problems associated with (fn, ψ, g).

Proof of Theorem 1 Let v ∈ Kg,ψ ∩ L∞(Ω). Taking v as a test function in (7) associated with (fn, ψ, g), we get∫
Ω

a(x,∇un)

(1 + |un|)θ(p−1)
· ∇(Tt(un − v))dx+

∫
Ω

b|un|r−2unTt(un − v)dx ≤
∫

Ω

fnTt(un − v)dx.

Since {|un − v| < t} ⊂ {|un| < s} with s = t+ ‖v‖∞, the previous inequality can be written as∫
Ω

χn∇ATs(un) · ∇vdx ≥
∫

Ω

−fnTt(un − v)dx+

∫
Ω

b|un|r−2unTt(un − v)dx+

∫
Ω

χn∇ATs(un) · ∇Ts(un)dx,

(38)

where χn = χ{|un−v|<t} and ∇Au = a(x,∇u)
(1+|u|)θ(p−1) . It is clear that χn ⇀ χ weakly* in L∞(Ω). Moreover, χn converges a.e.

to χ{|u−v|<t} in Ω \ {|u− v| = t}. It follows that

χ =

{
1, in {|u− v| < t},
0, in {|u− v| > t}.

Note that we have LN ({|u − v| = t}) = 0 for a.e. t ∈ (0,∞). So there exists a measurable set O ⊂ (0,∞) such that
LN ({|u − v| = t}) = 0 for all t ∈ (0,∞) \ O. Assume that t ∈ (0,∞) \ O. Then χn converges weakly* in L∞(Ω) and a.e.
in Ω to χ = χ{|u−v|<t}. Since ∇Ts(un) converges a.e. to ∇Ts(u) in Ω (Proposition 4), we obtain by Fatou’s Lemma

lim inf
n→∞

∫
Ω

χn∇ATs(un) · ∇Ts(un)dx ≥
∫

Ω

χ∇ATs(u) · ∇Ts(u)dx. (39)

Using the strong convergence of ∇ATs(un) to ∇ATs(u) in L1(Ω) (Lemma 7) and the weak* convergence of χn to χ in
L∞(Ω), we obtain

lim
n→∞

∫
Ω

χn∇ATs(un) · ∇vdx =

∫
Ω

χ∇ATs(u) · ∇vdx. (40)

Moreover, due to the strong convergence of fn to f and |un|r−2un to |u|r−2u (by r−1 < q∗ and the boundedness of ‖un‖q∗ )
in L1(Ω), and the weak* convergence of Tt(un − v) to Tt(u − v) in L∞(Ω), by passing to the limit in (38) and taking into
account (39)-(40), we obtain∫

Ω

χ∇ATs(u) · ∇vdx−
∫

Ω

χ∇ATs(u) · ∇Ts(u)dx ≥
∫

Ω

−fTt(u− v)dx+

∫
Ω

b|u|r−2uTt(u− v)dx,
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which can be written as∫
{|v−u|≤t}

χ∇ATs(u) · (∇v −∇u)dx ≥
∫

Ω

−fTt(u− v)dx+

∫
Ω

b|u|r−2uTt(u− v)dx,

or since χ = χ{|u−v|<t} and∇(Tt(u− v)) = χ{|u−v|<t}∇(u− v)∫
Ω

∇Au · ∇Tt(u− v)dx+

∫
Ω

b|u|r−2uTt(u− v)dx ≤
∫

Ω

fTt(u− v)dx, ∀ t ∈ (0,∞) \ O.

For t ∈ O, we know that there exists a sequence {tk} of numbers in (0,∞) \ O such that tk → t due to |O| = 0. Therefore,
we have∫

Ω

∇Au · ∇Ttk(u− v)dx+

∫
Ω

b|u|r−2uTtk(u− v)dx ≤
∫

Ω

fTtk(u− v)dx. (41)

Since∇(u− v) = 0 a.e. in {|u− v| = t}, the left-hand side of (41) can be written as∫
Ω

∇Au · ∇Ttk(u− v)dx =

∫
Ω\{|u−v|=t}

χ{|u−v|<tk}∇Au · ∇(u− v)dx.

The sequence χ{|u−v|<tk} converges to χ{|u−v|<t} a.e. in Ω\{|u−v| = t} and therefore converges weakly* in L∞(Ω\{|u−
v| = t}). We obtain

lim
k→∞

∫
Ω

∇Au · ∇Ttk(u− v)dx =

∫
Ω\{|u−v|=t}

χ{|u−v|<t}∇Au · ∇(u− v)dx

=

∫
Ω

χ{|u−v|<t}∇Au · ∇(u− v)dx

=

∫
Ω

∇Au · ∇Tt(u− v)dx. (42)

For the right-hand side of (41), we have∣∣∣∣ ∫
Ω

fTtk(u− v)dx−
∫

Ω

fTt(u− v)dx
∣∣∣∣ ≤ |tk − t| · ‖f‖1 → 0 as k →∞. (43)

Similarly, we have∣∣∣∣ ∫
Ω

|u|r−2uTtk(u− v)dx−
∫

Ω

|u|r−2uTt(u− v)dx
∣∣∣∣ ≤ |tk − t| · ‖|u|r−1‖1 → 0 as k →∞. (44)

It follows from (41)-(44) that we have the inequality∫
Ω

∇Au · ∇Tt(u− v)dx+

∫
Ω

b|u|r−2uTt(u− v)dx ≤
∫

Ω

fTt(u− v)dx, ∀ t ∈ (0,∞).

Hence, u is an entropy solution of the obstacle problem associated with (f, ψ, g). The dependence of the entropy solution on
the data f ∈ L1(Ω) is guaranteed by Proposition 4. �
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