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Abstract

In order to have massive neutrinos, the right-handed neutrino/sneutrino superfield (N) need to

be introduced in supersymmetry. In the framework of NMSSM (the MSSM with a singlet S) such

an extension will dynamically lead to a TeV-scale Majorana mass for the right-handed neutrino

through the SNN coupling when S develops a vev (the free Majorana mass term is forbidden by the

assumed Z3 symmetry). Also, through the couplings SNN and SHuHd, the SM-like Higgs boson

(a mixture of Hu, Hd and S) can naturally couple with the right-handed neutrino/sneutrino. As

a result, the TeV-scale right-handed neutrino/sneutrino may significantly contribute to the Higgs

boson mass. Through an explicit calculation, we find that the Higgs boson mass can indeed be

sizably altered by the right-handed neutrino/sneutrino. Such new contribution can help to push

up the SM-like Higgs boson mass and thus make the NMSSM more natural.
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I. INTRODUCTION

Supersymmetry (SUSY) [1, 2] gives a natural solution to the hierarchy problem suffered

by the Standard Model (SM). Also, it provides a good dark matter candidate and realizes

the gauge coupling unification. Among the SUSY models, the Minimal Supersymmetric

Standard Model (MSSM) [3] has been intensively studied. However, the recently discovered

Higgs-like boson around 125 GeV caused a problem for this model, i.e., a 125 GeV Higgs

boson requires a heavy stop or a large tri-linear coupling At and thus incurs the little

hierarchy problem. Besides, the MSSM suffers from the µ-problem [4].

It is remarkable that both the little hierarchy problem and the µ-problem can be solved in

the Next-to-Minimal Supersymmetric Standard Model (NMSSM) [5] in which an additional

gauge singlet S is introduced (in fact, the NMSSM was proposed even earlier than the

MSSM [6]). In this model the µ-problem is solved by the dynamical generation of the µ-

term through the coupling SHuHd when S develops a vev, while the little hierarchy problem

is solved by the generation of an extra tree-level mass term for the SM-like Higgs boson (thus

the stop mass or At is no longer required to be unnaturally large).

Note that in order to have massive neutrinos, right-handed neutrino/sneutrino super-

field(s) (N) need to be introduced in SUSY models. For the NMSSM with such right-handed

neutrino/sneutrino field(s) [7], some intriguing features are present. Due to the assumed Z3

symmetry, the free Majorana mass term for the right-handed neutrino is forbidden in the

superpotential. Instead, a TeV-scale Majorana mass for the right-handed neutrino is dy-

namically generated through the SNN coupling when S develops a vev (note that such

a TeV-scale majorana mass is too low for the see-saw mechanism and thus the neutrino

Yukawa couplings HuLN must be very small). In the same way, a TeV-scale mass for the

right-handed sneutrino can also be generated, which can serve as a good dark matter can-

didate [9]. Further, through the couplings SNN and SHuHd, the SM-like Higgs boson (a

mixture of Hu, Hd and S) can naturally couple with the right-handed neutrino/sneutrino.

As a result, the TeV-scale right-handed neutrino/sneutrino may significantly contribute to

the Higgs boson mass (in the MSSM with split SUSY, the right-handed neutrino/sneutrino

can also make sizable contribution to the Higgs mass, as studied in [10]). In this paper we

will perform an explicit calculation for such contribution.

This work is organized as follows. In Sec. II we present the spectrum and couplings
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for the Higgs boson and right-handed neutrino/sneutrino. In Sec. III the renormalization

scheme is described. Numerical results and discussions are given in Sec. IV. Finally, we

give a summary in Sec.V.

II. HIGGS AND RIGHT-HANDED NEUTRINO/SNEUTRINO IN NMSSM

A. Model description

The NMSSM with a right-handed neutrino superfield N has a superpotential given by

W =WNMSSM + λNSNN + yNHu · LN,

WNMSSM = YuHu ·QuR − YdHd ·QdR − YeHd · LeR + λSHu ·Hd +
1

3
κS3, (1)

where the flavor indices are omitted and the dot denotes the SU(2)L antisymmetric product.

Since a global Z3 symmetry is imposed, there are no supersymmetric mass terms (like HuHd,

NN or SS) in the superpotential. Note that in this model we impose R-parity and thus the

terms NNN and SSN are forbidden. As a result, the sneutrino-Higgs mixing is avoided

and also there is no vev for the right-handed sneutrino (we will show how to get the globle

minimum in the following). Although a bare Majorana mass term NN is forbidden in the

superpotential, a TeV-scale Majorana mass can be generated through the coupling SNN

when S develops a non-zero vev (vs). Such a TeV-scale Majorana mass is too small for the

conventional see-saw mechanism and thus the Yukawa coupling yNHuLN should be very

small (yN ≪ 1). Note that here we introduce only one right-handed neutrino superfield to

illustrate its effects on the Higgs mass. In order to explain the neutrino masses and mixings,

more right-handed neutrino superfields need to be introduced, each of which will contribute

to the Higgs mass. In this case, the calculation method is same as in our calculation, but

the total effects may be more sizable due to more free parameters.

The soft SUSY breaking terms for Higgs and right-handed sneutrino are given by (here-

after we use N and Ñ to denote respectively right-handed neutrino and sneutrino)

−Lsoft = M2
Hu

|Hu|2 +M2
Hd
|Hd|2 +M2

s |S|2 + (λAλHu ·HdS +
κ

3
AκS

3 + h.c.)

+M2
Ñ
|Ñ |2 + (λNANSÑÑ + h.c.) (2)

Here we neglected the mixing between left-handed and right-handed sneutrinos because the
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mixing is assumed to be suppressed by yN . In the following we briefly discuss the neutral

Higgs neutrino sectors.

B. The neutral Higgs sector

From Eq. (1) and Eq. (2) we get the Higgs potential

V = λ2(|Hu|2|S|2 + |Hd|2|S|2 + |Hu ·Hd|2) + κ2|S2|2

+λκ(Hu ·HdS
∗S∗ + h.c.) +

1

4
g2(|Hu|2 − |Hd|2)2

+
1

2
g22|H+

u (H
0
d)

∗ +H0
u(H

−

d )
∗|2 +M2

Hu
|Hu|2 +M2

Hd
|Hd|2 +M2

S|S|2

+(λAλHu ·HdS +
1

3
κAκ S

3 + h.c.) (3)

where g2 = (g21 + g22)/2 with g1 and g2 being the SM gauge coupling constants. Assuming

Hu, Hd and S get vevs such that

H0
u = vu +

Re(H0
R) + iIm(H0

u)√
2

, H0
d = vd +

Re(H0
d) + iIm(H0

d)√
2

, S = vs +
SR + iSI√

2
(4)

we can get the mass terms for the Higgs fields, which are presented in [11]. Here we only

show the conventions and give some brief comments:

1. The mass matrix for the CP-even neutral Higgs is obtained from the real components of

the Higgs fields. In the basis hbare = [Re(H0
u),Re(H

0
d), SR] and using the minimization

equations to eliminate the soft masses, one obtains three CP-even states (ordered in

mass)

hi = Sijh
bare
j (5)

with an orthogonal rotation Sij .

2. The mass matrix for the CP-odd neutral Higgs is obtained form the imaginary com-

ponents of the Higgs fields [Im(H0
u), Im(H0

d), SI ]. Its diagonalization is performed in

two steps. First, one rotates it into a basis (A, SI , G) where G = − sin βIm(H0
u) +

cos βIm(H0
d) is a massless Goldstone mode (tan β = vu/vd is the ratio of the vevs of

the two Higgs doublets). Dropping the Goldstone mode, the remaining 2 × 2 mass

matrix M2
p in the basis (A, SI) can be diagonalized by an orthogonal 2× 2 matrix Pij
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into two physical CP-odd states ai (ordered in mass):

a1 = P11A+ P12SI ,

a2 = P21A+ P22SI . (6)

3. The neutralino mass matrix MN in the basis ψ0 = (−iλ1,−iλ2, ψ0
u, ψ

0
d, ψs) can be

diagonalized by an rotation matrix Nij . Then one obtains five eigenstates (ordered in

mass) χ0
i = Nijψ

0
j .

C. Right-handed neutrino/sneutrino sector

Since there is no Dirac mass term here, the mass spectrum of the right-handed neutrino

sector is very simple. Denoting Ñ = R + iM , there are only one CP-even right-handed

sneutrino (denoted as R) and one CP-odd right-handed sneutrino (denoted as M). The

right-handed neutrino is denoted as N . From Eq. (1) and Eq. (2) we can get the spectrum

as

m2
R = 4λ2Nv

2
s +M2

Ñ
+ 2λNvsAN + 2λN(κv

2
s − λvuvd)

m2
M = 4λ2Nv

2
s +M2

Ñ
− 2λNvsAN − 2λN(κv

2
s − λvuvd)

mN = 2λNvs. (7)

With the above spectrum we can get the couplings between the Higgs and the right-handed

neutrino/sneutrino. Note that in our numerical study we require M2
R and M2

M be positive,

and, as a result, the global minimum of the scalar potential locates at the zero point of

the right-handed sneutrino field (the right-handed sneutrino has no vev and thus R-parity is
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preserved). In the following we list the couplings which will be used in our later calculations:

VhiRR =
√
2λNλ (vuSj2 + vdSj1)−

√
2
(
2λNκvs + 4λ2Nvs + λNAN

)
Sj3, (8)

VhiMM = −
√
2λNλ (vuSj2 + vdSj1) +

√
2
(
2λNκvs − 4λ2Nvs + λNAN

)
Sj3, (9)

VhihjRR = −λN [2κSj3Si3 − λ(Sj1Si2 + Si1Sj2)]− 4λ2NSj3Si3, (10)

VhihjMM = λN [2κSj3Si3 − λ(Sj1Si2 + Si1Sj2)]− 4λ2NSj3Si3, (11)

VaiRM = −2λN (−λv cos 2βPi1/
√
2 +

√
2κvsPi1) +

√
2λNANPi2, (12)

VaiajRR = 2λN(λ sin β cos βPi1Pj1 + κPi2Pj2)− 4λ2NPi2Pj2, (13)

VaiajMM = −2λN(λ sin β cos βPi1Pj1 + κPi2Pj2)− 4λ2NPi2Pj2, (14)

VhiNN = −
√
2λNSi3 VaiNN =

√
2iλNPi2γ

5, (15)

VχiRN = −λN
Ni5

2
√
2

VχiMN = λN
iNi5γ

5

2
√
2
. (16)

III. RENORMALIZATION SCHEME

To calculate the neutrino/sneutrino contribution to the Higgs mass, we must calculate

the one-loop Higgs propagator and choose a renormalization scheme. Here we follow [12] and

choose the mixed renormalization scheme (other schemes give similar results). We choose

the following parameter set

MZ , MW , MH± , e, tHu
, tHd

, tHs
,

︸ ︷︷ ︸

on-shell scheme

tan β, λ, vs, κ, Aκ
︸ ︷︷ ︸

DR scheme

, (17)

where tHu
, tHd

, tHs
are the tadpoles of the CP-even Higgs fields. Since we concentrate on

the right-handed nuetrino/sneutrino contributions, the input parameters from the gauge

interaction part need not be renormalized. For the parameters which need renormalization,

we replace them by the renormalized ones plus the corresponding counterterms:

tHu
→ tHu

+ δtHu
, tan β → tan β + δ tanβ

tHd
→ tHd

+ δtHd
, λ→ λ+ δλ

tHs
→ tHs

+ δtHs
, κ→ κ+ δκ

vs → vs + δvs, Aκ → Aκ + δAκ .

(18)

In the following we will show how to determine the counter terms in the mixed renormal-

ization scheme.
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hi hj

=

R, M

hi hj

+

R, M

hi hj

+

ψN

hi hj

+

δij

hi hj

FIG. 1: Feynman diagrams for the two-point renormalized Higgs functions.

First, the Higgs doublet and singlet fields are replaced by the renormalized ones:

Hu →
√

ZHu
Hu=

(

1 +
1

2
δZHu

)

Hu

Hd →
√

ZHd
Hd =

(

1 +
1

2
δZHd

)

Hd (19)

S →
√

ZS S =

(

1 +
1

2
δZS

)

S .

Then the renormalized two-point functions can be obtained from the Feynman diagrams

shown in Fig. 1

Σ̂HiHj
(k2) = Sik Sjl Σ̂

S
kl(k

2) (i, j, k, l = 1, 2, 3), (20)

Σ̂AiAj
(k2) = Pik Pjl Σ̂

P
kl(k

2) (i, j, k, l = 1, 2), (21)

where Sij and Pij are the matrix elements defined in Eqs.(5) and (6). The renormalization

condition can be set as

δZHiHi
= − ∂ΣHiHi

(k2)

∂k2

∣
∣
∣
∣

div

k2=(M
(0)
Hi

)2
(i = 1, 2, 3) , (22)

where M
(0)
Hi

denotes the corresponding tree-level Higgs mass, and ’div’ shows that we chose

the DR renormalization scheme which means that in the field renormalization only the

divergent part ∆ = 2/(4 − D) − γE + ln(4π) (γE is the Euler constant) is kept. The field

renormalization constants δZHd
, δZHd

, δZS are obtained by solving the equations

δZHiHi
= |Si1|2δZHd

+ |Si2|2δZHu
+ |Si3|2δZS (i = 1, 2, 3) . (23)

7



We use the field renormalization constants to determine the conterterms listed in Eq. (18).

The detailed calculations are lengthy. In the following we only present the final results and

give some necessary comments.

1. Tadpole parameters:

The tadpole parameters are determined by the condition that they vanish after the

renormalization. The Feynman diagrams are shown in Fig. 2 and the counter terms

are determined by

δtHi
= Sji t

(1)
hj

(i = u, d, s, j = 1, 2, 3) . (24)

where t
(1)
hj

denote the one-loop Higgs tadpoles.

hi

=

R, M

hi

+

ψN

hi

+

δhi

FIG. 2: Feynman diagram for the Higgs tadpoles.

2. The parameter tanβ:

δ tanβ =

[
tanβ

2
(δZHu

− δZHd
)

]

div

. (25)

3. The coupling λ:

δλ =
e2

4λM2
W s

2
W

[

ΣP,11(M
2
P,11)

]

div
.

The self-energy ΣP,11 is obtained from the self-energies in the mass eigenstate basis

ΣAiAj
(i, j = 1, 2, 3) through

ΣP,11 = Pi1ΣAiAj
Pj1 . (26)
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4. The singlet Higgs vev vs:

δvs = −vs
δλ

λ

∣
∣
∣
∣
div

, (27)

5. The coupling κ:

κ is renormalized through the neutralino renormalization whose diagrams are shown

in Fig. 3. Note that we have different conventions of vev and thus the formula is a

little different from Ref. [12].

δκ =
1

2vs
δ(MN)55 − κ

δvs
vs

. (28)

ψi ψj

=
χi χj

ψN

R,M

+
χj

δij

χi

FIG. 3: Feynman diagrams for the renormalized two-point neutralino functions.

6. Tri-linear coupling Aκ:

Aκ is renormalized by the CP-odd Higgs element M2
P,22 and is given by

δAκ =
[

− 1

3κvs

[
ΣP,22

(

M2
P,22

)

− δf
]
− Aκ

[δκ

κ
+
δvs
vs

]]

div
, (29)

where the fuction f can be found in Ref. [12].

After the determination of the counterterms, we put these terms into the Higgs mass matrix

which is shown in the Appendix. Also, by adding the loop contribution to the Higgs mass

matrix, we can get the mass correction for the Higgs boson.

IV. NUMERICAL RESULTS

A. The right-handed neutrino/sneutrino correction to the Higgs boson mass

In our numerical calculation we concentrate on the SM-like Higgs boson which is the

lightest CP-even Higgs boson dominated by the Higgs doublets. From the superpotential in

9



0

0.1

0.2

0.3

0.4

0.5

10
-2

10
-1

λλN

(δ
m

h
)2  / 

m
h2

FIG. 4: The right-handed neutrino/sneutrino contribution to the SM-like Higgs boson mass versus

λλN .

Eq. (1) we can see that the right-handed neutrino/sneutrino interacts with the doublet only

through the F-term of the singlet Higgs S, and thus the parameter λ will play an important

role in the correction to the Higgs boson mass. Also, from the superpotential we can also see

that the right-handed neutrino/sneutrino couples to the Higgs sector through the parameter

λN . So, as λN approaching zero, the right-handed neutrino/sneutrino should decouple form

the NMSSM sector. To check this numerically, we scan the parameter space in the range:

0 < λ, κ, λN < 1, 2 < tan β < 50, (30)

0 < µ,MÑ < 1 TeV, − 1 TeV < Aλ, Aκ, AN < 1 TeV, (31)

Note that in the calculation of the Higgs mass spectrum we chose to use µ (= λvs) as an

input parameter because it is commonly used in the NMSSM phenomenology studies and

the relevant numerical packages. Also we note that λ and λN may be rather constrained

(e.g., λ at weak scale must be below 0.7) if we require perturbativity of the theory up to

the grand unification scale [13]. Of course, if we just treat NMSSM as a low energy effective

theory, such a stringent perturbativity constraint will be much relaxed.

The correction to the Higgs boson mass versus product of λ and λN is shown in Fig.4.

From the figure we can see that when the product of λ and λN approaches to zero, the

correction will approach zero; when λλN is at order 1, the right-handed neutrino/sneutrino
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will alter the mass significantly. Thus, if λ and λN is not small, then the right-handed

neutrino/sneutrino contribution to the Higgs boson mass must be taken into account.

Now we check the SUSY limit in the right-handed neutrino/sneutrino sector. From Eq.

(7) we can see that withMÑ and AN approaching zero, the right-handed neutrino/sneutrino

sector has a SUSY limit for κv2s = λvuvd. In our second scan, we assume the relation

κv2s = λvuvd and let the parameter λ, κ, tan β, Aλ, Aκ, MÑ and AN vary randomly in

range as in Eqs. (30, 31), only fixing λN = 0.9. The results are shown in Fig. 5. The results

show that with
√

M2
Ñ
+ A2

N approaching zero, the Higgs mass correction approaches zero,

which confirms the SUSY limit.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 10
2


√MN

2+AN
2   (GEV)~

λN = 0.9

(δ
m

h
)2  / 

m
h2

FIG. 5: The right-handed neutrino/sneutrino contribution to the SM-like Higgs boson mass versus
√

M2
Ñ
+A2

N .

It is well known that the Higgs mass can be enhanced by the hierarchy between the SM

particles and their SUSY partners. In the right-handed neutrino/sneutrino sector, the mass

hierarchy between sneutrino and neutrino is controlled by the soft parameters MÑ and AN .

In order to show the dependence on the mass splitting, we chose a benchmark point:

λ = 0.2, λN = 0.35, κ = 0.4, tanβ = 10,

µ = 200 GeV, Aλ = 300 GeV, Aκ = −500 GeV, (32)

and scan the other two parameters in the range of 0 < MÑ < 1 TeV and −1 TeV < AN <

1 TeV. The results are shown in Fig. 6, in which the left panel shows δmh versus MÑ and
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)

-3
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-1

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

mR
2 / mN
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mh
(0) = 89.1 GeV

δm
h
 (

G
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)
FIG. 6: The right-handed neutrino/sneutrino contribution to the SM-like Higgs boson mass versus

the sneutrino soft mass MÑ and the ratio m2
R/m

2
N (for mR and mN , see Eq. (7)).

the right panel shows δmh versus m2
R/m

2
N . From this figure we can see that asMÑ increases

(the mass slitting between sneutrino and neutrino also increases as shown in Eq. (7)), the

mass correction increases.

From the above results we see that the right-handed neutrino/sneutrino can either en-

hance or reduce the Higgs boson mass. Since the parameter space is multi-dimensional (9

input parameters), we perform an intensive scan to try to figure out what parameter(s)

determine the sign of the correction. We scan the parameter set (λ, λN , MÑ , AN) while

fix other parameters as listed in Eq. (32). The results are shown in Fig. 7. We see that the

parameter λ plays the most important role in this aspect although it cannot solely determine

the sign. For a large value of λ the sign of the correction tends to be negative. Clearly, the

sign is not sensitive to λN . We also checked that the sign is not sensitive to other parameters.

B. Higgs mass with all loop corrections under current experimental constraints

In the preceding section we only considered the loop corrections from the right-handed

neutrino/sneutrino. Of course, the loop corrections from other particles (especially the top

and stop) should also be taken into account. In our following numerical study, we include all

available loop corrections by using the package NMSSMTools [11]. Since the right-handed

neutrino/sneutrino is a gauge singlet, it will not change the Higgs decay or the annihilation

12
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0.2

0.3
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λ
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FIG. 7: The right-handed neutrino/sneutrino contribution to the SM-like Higgs boson mass shown

in the plane of λN versus λ. Here we scan the parameter set (λ, λN , MÑ , AN ) while fix other

parameters as listed in Eq. (32). The red ’×’ are for δmh < −1 GeV, the green ’+’ for −1 GeV <

δmh < 0, the blue ’◦’ for 0 < δmh < 1 GeV, and the magenta ’△’ for δmh > 1 GeV.

of the dark matter. So, we just add the right-handed neutrino/sneutrino correction to the

Higgs boson mass in the NMSSMTools. Then we scan the NMSSM parameter space in the

range:

0 < λ, k < 1, 2 < tanβ < 50,

0 < (µ,M1 =M2/2 =M3/6, mQ̃, mt̃ = mb̃ = mτ̃ = mµ̃) < 1 TeV,

−1 TeV < (Aλ, Aκ, At = Ab = Aτ = Aµ) < 1 TeV. (33)

For the neutrino/sneutrino sector, we set λN = 0.5 and scan MÑ , AN in the range

0 < MÑ < 1 TeV, − 1 TeV < AN < 1 TeV. (34)

In our scan we consider the following experimental constraints [14]: (1) We require the

lightest neutralino χ̃0
1 to account for the dark matter relic density 0.105 < Ωh2 < 0.119;

(2) We require the SUSY contribution to explain the deviation of the muon aµ, i.e., a
exp
µ −

aSMµ = (25.5 ± 8.0) × 10−10 at 2σ level; (3) The LEP-I bound on the invisible Z-decay,

Γ(Z → χ̃0
1χ̃

0
1) < 1.76 MeV, and the LEP-II upper bound on σ(e+e− → χ̃0

1χ̃
0
i ), which
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is 5 × 10−2 pb for i > 1, as well as the lower mass bounds on the sparticles from the

direct searches at LEP and the Tevatron; (4) The constraints from the direct search for the

Higgs bosons at LEP-II, including the decay modes h → h1h1, a1a1 → 4f , which limit all

possible channels for the production of the Higgs bosons; (5) The constraints from B-physics

observables like B → Xsγ, Bs → µ+µ−, B+ → τ+ν, Υ → γa1, the a1–ηb mixing and the

mass difference ∆Md and ∆Ms; (6) The newest results for Higgs, top and stop results of the

LHC. These constraints have been encoded in the package NMSSMTools [11]. In addition to

the above experimental limits, we also consider the constraint from the stability of the Higgs

potential, which requires that the physical vacuum of the Higgs potential with non-vanishing

vevs of Higgs scalars should be lower than any local minima.
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M

FIG. 8: The left panel shows the loop-corrected mass of the SM-like Higgs with or with-

out the right-handed neutrino/sneutrino contribution, while the right panel shows the ratio

mNMSSM+RHN
h /mNMSSM

h with mNMSSM+RHN
h (mNMSSM

h ) denoting the SM-like Higgs mass with

(without) the right-handed neutrino/sneutrino contribution.

The numerical results of our scan are shown in Fig. 8 in which we show the SM-

like Higgs mass versus the tri-linear parameter At in the left panel, and the ratio of

mNMSSM+RHN
h /mNMSSM

h versus mNMSSM+RHN
h in the right panel. Again we see that the contri-

bution of the right-handed neutrino/sneutrino is sizable, which helps to push up the SM-like

Higgs boson mass and thus makes the NMSSM more natural.

Note that from Figs.6 and 7 we see that the correction to the Higgs mass can be positive

or negative, depending on the parameter space (the most sensitive parameter is λ). However,
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under current experimental constraints the results in Fig.8 show that in the major part of the

survived parameter space the correction is positive. The reason is that the parameter samples

which give negative corrections are hard to survive the current experimental constraints

(especially the Higgs mass lower bound given by LEP-II).

V. SUMMARY

In order to have massive neutrinos, the right-handed neutrino/sneutrino superfield must

introduced in SUSY. In the framework of NMSSM such an extention will dynamically lead

to a TeV-scale Majorana mass for the right-handed neutrino. Further, through the cou-

plings SNN and SHuHd, the SM-like Higgs boson can naturally couple with such TeV-scale

right-handed neutrino/sneutrino. As a result, the right-handed neutrino/sneutrino may

significantly contribute to the Higgs boson mass. In this work we performed an explicit

calculation and found that the Higgs boson mass can indeed be sizably altered by the right-

handed neutrino/sneutrino. Such new contribution can help to push up the SM-like Higgs

boson mass and thus make the NMSSM more natural.
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Appendix

Here we list the analytical renormalized formula for the elements of the Higgs mass

matrix. Although they can be found in Ref. [12], we checked them and modified them

according to our convention. Note that βB denotes the tree-level β and the cX , sX , tX

denote respectively cosX , sinX and tanX .

The scalar 3 × 3 mass matrix M2
S in the basis hS = (Hu, Hd, S)

T is given by the entries

15



M2
Sij

=M2
Sji

(i, j = 1, 2, 3) with

M2
S11

=
ecβcβB

2MW sW c2∆β

[−tHd
sβB

tβB
+ tHu

sβB
(tβtβB

+ 2)]

+
c2β
c2∆β

[M2
H± + (M2

Zt
2
β −M2

W )c2∆β] +
2λ2M2

W s
2
W c

2
β

e2
, (35)

M2
S12

=
ecβc

2
βB

2MW sW c2∆β

[tHd
tβt

2
βB

+ tHu
]− sβcβ

c2∆β

[M2
H± + (M2

Z −M2
W )c2∆β] +

λ2M2
Ws

2
W s2β

e2
, (36)

M2
S13

=
c2βc

2
βB√

2vsc2∆β

[tHd
tβt

2
βB

+ tHu
] +

√
2MW sWsβc

2
β

evsc2∆β

[M2
W c

2
∆β −M2

H± ]

+

√
2λMW sW cβvs

e
[2λtβ − κ] +

−2
√
2λ2M3

W s
3
W sβc

2
β

e3vs
, (37)

M2
S22

=
ecβc

2
βB

2MW sW c
2
∆β

[tHd
(2tβtβB

+ 1)− tHu
tβ] (38)

+
s2β
c2∆β

[M2
H± + (M2

Zt
−2
β −M2

W )c2∆β] +
2λ2M2

W s
2
Ws

2
β

e2
, (39)

M2
S23

=
sβcβc

2
βB√

2vsc
2
∆β

[tHd
tβt

2
βB

+ tHu
] +

√
2MW sWs

2
βcβ

evsc
2
∆β

[M2
W c

2
∆β −M2

H± ] (40)

+

√
2λMW sW cβvs

e
[2λ− κtβ ] +

−2
√
2λ2M3

W s
3
W s

2
βcβ

e3vs
, (41)

M2
S33

= κAκvs + 4κ2v2s +
tHs√
2vs

+
MW sWsβc

2
β

e2v2sc
2
∆β

[2M2
H±MW sW sβ − e(tHd

tβs
2
βB

+ tHu
c2βB

)]

+
M2

W s
2
W s2β

2e4v2s
[2λ2M2

W s
2
W s2β − 2κλe2v2s −M2

W e
2s2β] . (42)

The entries M2
Pij

=M2
Pji

(i, j = 1, 2, 3) of the pseudoscalar 3× 3 mass matrix M2
P in the

basis hP = (a, as, G)
T read

M2
P11

=
2λ2M2

W s
2
W c

2
∆β

e2
+M2

H± −M2
W c

2
∆β, (43)

M2
P12

=
MW sWs2β√
2evsc∆β

[M2
H± −M2

W c
2
∆β]−

cβc
2
βB√

2vsc∆β

[tHu
+ tHd

tβt
2
βB
]

+
λMW sW c∆β√

2e3vs
[2λM2

W s
2
Ws2β − 6κe2v2s ], (44)

M2
P13

=M2
H±t∆β +

M2
W s2∆β

2e2
[2λ2s2W − e2] +

ecβB

2MW sW c∆β

[tHd
tβB

− tHu
], (45)

M2
P22

= −3Aκκvs +
tHs√
2vs

−
MW sWsβc

2
βc

2
βB

e2v2sc
2
∆β

[tHu
+ tHd

tβt
2
βB
]

+
M2

W s
2
Ws

2
2β

2ev2sc
2
∆β

[M2
H± −M2

W c
2
∆β] +

λM2
W s

2
Ws2β

e4v2s
[λM2

W s
2
Ws2β + 3κe2v2s ], (46)
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M2
P23

=
MW sWs2β

2
√
2evsc∆β

[2M2
H±t∆β −M2

W s2∆β]−
cβc

2
βB
t∆β√

2vsc∆β

[tHu
+ tHd

tβt
2
βB
]

+
λMW sWs∆β√

2e3vs
[2λM2

W s
2
Ws2β − 6κe2v2s ], (47)

M2
P33

=M2
H± tan2∆β +

M2
W sin2∆β

e2
[2λ2s2W − e2]

+
e

2MWsW c2∆β

[tHd
cβ−2βB

− tHu
sβ−2βB

] . (48)
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