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where n is the braking index, and K is a positive constant that depends on the magnetic dipole moment and

the moment of inertia of the neutron star (NS). By differentiating Equation (1), one can obtain n in terms of

several observables, n = ���= _�2. For the standard vacuum magnetic dipole radiation model with a constant

magnetic �eld (i.e. _K = 0), n = 3 (Manchester & Taylor 1977). Thus the frequency’s second derivative

can be simply expressed as

�� = 3 _�2=�: (2)

The model predicts �� > 0 and j��j should be very small.

However, unexpectedly large values of �� were measured for several dozen pulsars thirty years ago

(Gullahorn & Rankin 1978; Helfand et al. 1980; Manchester & Taylor 1977), and many of those pulsars

surprisingly showed �� < 0. Some authors suggested that the observed values of �� could result from a noise-

type �uctuation in the pulsar period (Helfand et al. 1980; Co rdes 1980; Cordes & Helfand 1980). Based on

the timing data of PSR B0329+54, Demia�nski & Pr�oszy�nski (1979) further proposed that a distant planet

would in�uence ��, and the quasi-sinusoidal modulation in timing residuals might be caused by changes in

pulse shape, precession of a magnetic dipole axis, or an orbiting planet. Baykal et al. (1999) investigated

the stability of �� for pulsars PSR B0823+26, PSR B1706-16, PSR B1749-28 and PSR B2021+51 using

their time-of-arrival (TOA) data extending to more than three decades. This analysis con�rmed that the

anomalous �� terms of these sources arise from red noise (timing residuals with low frequency structure),

which may originate from external torques applied by the magnetosphere of a pulsar.

The relationship between the low frequency structure in timing residuals and the �uctuations in pulsar

spin parameters (�, _�, and ��) is very interesting and important. We call both the residuals and the �uctuations

the �timing noise� in the present work, since we will infer th at they have the same origin. Timing noise for

some pulsars has been studied for over four decades (e.g. Boynton et al. 1972; Groth 1975; Jones 1982;

Cordes & Downs 1985; D’Alessandro et al. 1995; Kaspi, Chakrabarty & Steinberger 1999; Chukwude

2003; Livingstone et al. 2005; Shannon & Cordes 2010; Liu et al. 2011; Coles et al. 2011; Jones 2012).

However, the origins of the timing noise are still controversial and there is still unmodelled physics to

be understood. Boynton et al. (1972) suggested that the timing noise might arise from �random walk�

processes. The random walk in � may be produced by small scale internal super�uid vortex unp inning

(Alpar, Nandkumar & Pines 1986; Cheng 1987a), or short time (t � 10 ms for the Crab pulsar) �uctuations

in the size of the outer magnetosphere gap (Cheng 1987b). Stairs, Lyne & Schemar (2000) reported long

time-scale, highly periodic and correlated variations in the pulse shape and the slow-down rate of the pulsar

PSR B1828-11, which have generally been considered as evidence of free precession. The possibilities

were also proposed that the quasi-periodic modulations in timing residuals could be caused by an orbiting

asteroid belt (Cordes & Shannon 2008) or a fossil accretion disk (Qiao et al. 2003).

Recently, Hobbs et al. (2010, hereafter H2010) carried out the most extensive study so far of long term

timing irregularities of 366 pulsars. Besides ruling out some timing noise models in terms of observational

imperfections, random walks, and planetary companions, some of their main conclusions were: (1) timing

noise is widespread in pulsars and is inversely correlated with pulsar characteristic age �c; (2) signi�cant

periodicities are seen in the timing noise of a few pulsars, but quasi-periodic features are widely observed;

(3) the structures seen in the timing noise vary with data spans, i.e., more quasi-periodic features are seen
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for a longer data span and the magnitude of j��j for a shorter data span is much larger than that caused by

the magnetic braking of the NS; and (4) the numbers of negative and positive �� are almost equal in the

sample, i.e. Np t Nn. Lyne et al. (2010) showed credible evidence that timing noise and _� are corre-

lated with changes in the pulse shapes, and are therefore linked to and caused by changes in the pulsar’s

magnetosphere.

Blandford & Romani (1988) re-formulated the braking law of a pulsar as _� = �K(t)�3, which means

that the standard magnetic dipole radiation is still responsible for the instantaneous spin-down of a pulsar,

and ���= _�2 6= 3 does not indicate deviation from the dipole radiation model, but only means that K(t) is

time dependent. Considering the magnetospheric origin of timing noise as inferred by Lyne et al. (2010),

we assume that magnetic �eld evolution is responsible for th e variation of K(t), i.e. K = AB(t)2, in which

A = 8�2R6 sin �2

3c3I
is a constant, and R (’ 106 cm), I (’ 1045 g cm2), and � (’ �=2) are the radius, moment

of inertia, and angle of magnetic inclination for the NS, respectively. We can rewrite Equation (2) as

�� = 3 _�2=� + 2 _� _B=B: (3)

Since the numbers of negative and positive �� are almost equal, it should be the case that B quasi-

symmetrically oscillates, and usually j2 _� _B=Bj � 3 _�2=�. In addition, it can be noticed that pulsars with

�c . 105 yr always have �� > 3 _�2=� (H2010); a reasonable interpretation is that their magnetic �eld decays

(i.e. _B < 0) dominate the �eld evolution for these �young� pulsars.

Therefore, Zhang & Xie (2012a, hereafter Paper I) constructed a phenomenological model for the dipole

magnetic �eld evolution of pulsars with a long-term decay mo dulated by short-term oscillations,

B(t) = Bd(t)(1 +
X

ki sin(�i + 2�
t

Ti

)); (4)

where t is the pulsar’s age, and ki, �i and Ti are the amplitude, phase and period of the i-th oscillating

component, respectively. Bd(t) = B0(t=t0)��, in which B0 is the �eld strength at the age t0, the index

� = 0 means the �eld has no long-term decay, and it was found that � & 0:5 for young pulsars with

�c < 106 yr (see Paper I for details). Substituting Equation (4) into Equation (1), we get the differential

equation describing the the spin frequency evolution of a pulsar as follows

_���3 = �AB(t)2: (5)

In paper I, we showed that the distribution of �� and the inverse correlation of �� versus �c could be

explained well with analytic formulae derived from the phenomenological model. In Zhang & Xie (2012b,

hereafter Paper II), we also derived an analytical expression for the braking index (n) and pointed out that

the instantaneous value of n of a pulsar is different from the �averaged� n obtained from the traditional

phase-�tting method over a certain time span. However, this �averaging� effect was not included in our

previous analytical studies; this work is focused on addressing this effect.

This paper is organized as follows. In Section 2, we show that the timescales of magnetic �eld oscil-

lations are tightly connected to the �� evolution and the quasi-periodic oscillations appearing in the timing

residuals, and the reported data of PSR B0329+54 are �tted. I n Section 3, we perform Monte Carlo simula-

tions on the pulsar distribution in the �� � �c and n � �c diagram. Our results are summarized and discussed

in Section 4.
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2 MODELING THE �� AND N EVOLUTION AND TIMING RESIDUALS OF PULSAR PSR

B0329+54

PSR B0329+54 is a bright (e.g. 1500 mJy at 400 MHz1), 0:71 s pulsar that had been suspected of possess-

ing planetary-mass companions (Demia�nski & Pr�oszy�nski 1979; Bailes, Lyne, & Shemar 1993; Shabanova

1995). However the suspected companions have not been con�r med and their existence is currently con-

sidered doubtful (Cordes & Downs 1985; Konacki et al. 1999; H2010). Konacki et al. (1999) suggested

that the observed ephemeral periodicities in the timing residuals for PSR B0329+54 are intrinsic to this NS.

H2010 believed that the timing residual has a form that is similar to other pulsars in their sample. They

plotted j��j obtained from the B0329+54 data sets with various time spans (see Figure 12 in their paper).

For data spanning � 10 yr, they measured a large and signi�cant ��, and found that the timing residuals take

the form of a cubic polynomial. However, no cubic term was found for data spanning more than � 25 yr,

and j��j became signi�cantly smaller. The reported periods of the ti ming residuals for PSR B0329+54 are

1100 days, 2370 days, and/or 16:8 years (Demia�nski & Pr�oszy�nski 1979; Bailes, Lyne, & Shemar 1993;

Shabanova 1995).

In order to model the �� evolution for pulsar PSR B0329+54, we �rst obtain �(t) by integrating the

spin-down law described by Equations (4) and (5), and then the phase

�(t) =

Z t

t0

�(t0)dt0: (6)

Finally, these observable quantities, �, _� and �� can be obtained by �tting the phases to the third order of its

Taylor expansion over a time span Ts,

�(ti) = �0 + �(ti � t0) +
1

2
_�(ti � t0)2 +

1

6
��(ti � t0)3: (7)

We thus get �, _� and �� for Ts from �tting to Equation ( 7), with a certain time interval of phases �Tint =

106 s (interval between each TOA, i.e. �Tint = ti+1 � ti).

We adopt a goodness of �t parameter to show how well the model m atches the data, i.e. �2 =
P

�2
i =P (��iM���iD)2

�2

i

, where the subscripts M and D refer to the model results and the reported data, and �i are the

uncertainties in the reported data. In order to minimize �2, we adopt the Simulated Annealing Algorithm

(SAA) to reach a fast convergence and avoid being trapped in a local minimum, and we use a simulation

based on the Markov chain Monte Carlo (MCMC) methods for the � tting to explore the whole parameter

space.

In the upper panel of Figure 1, we show the reported and the best-�tting (simulated) resul ts of j��j
for various Ts for PSR B0329+54; the reported data are read from Figure 12 of H2010. There are three

oscillation components involved in the simulation, and � = 0 is taken from Equation (4). The obtained

smallest value of �2 is 9.1, with the number of degrees of freedom being 20, and all the best-�t parameters

for the three oscillation components are listed in Table 1. �2
i for each reported data point is also shown in

the middle panel; in the bottom panel, we show the corresponding n with the same oscillation parameters

obtained above. The braking index n = ���= _�2 obtained directly from Equation (5) is called �instantaneous�

n; similarly, what is obtained by �tting phase sets to Equatio n (7) is called �averaged� n. It can be seen that

1
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Fig. 1 j��j, �2
i and n for PSR B0329+54. Top panel: reported and �tted j��j. The values reported

by H2010 are represented by large cross symbols (�� > 0) and large circles (�� < 0); the best-

�tting results are represented by small cross symbols ( �� > 0) and small circles (�� < 0); the

horizontal dashed line represents �� = 3 _�2=�. Middle panel: the goodness of �t parameter �2
i for

the �t of j��j. It is shown that the three-component model �ts the reported data quite well. Bottom

panel: instantaneous (solid line) and averaged (crosses) values of n. The horizontal dotted line

represents n = 0.

the averaged n has the same variation trends as ��, since j��=�j � 10�6 and j� _�= _�j � 10�3 are tiny,

compared to j���=��j � 1. The magnitude of the �rst period of the averaged n is close to the instantaneous

one, but it decays signi�cantly due to the �averaging� effec t.

Since both the �ts with one and two oscillation components ar e not very good and are certainly rejected

by the �2 test (e.g. the smallest �2 of the two component simulation is 128), and �2 is not signi�cantly

reduced after setting the index � as a free parameter, we thus conclude that three oscillation components

are necessary for the �tting the variation in j��j.
We use the Pearson Correlation Coef�cient � = Covariance(X;Y )p

Variance(X)Variance(Y )
to measure the covariance

between the parameters, where X and Y are the parameters to be tested. We show the joint posterior

probability distribution between each pair of parameters in Figure 2, with � labeled in each panel. For each

of the three oscillation components, their phase � is completely coupled with their period T . All other

parameters are well determined independently.

The timing residuals, after subtraction of the pulsar’s � and _� over 36:5 years for PSR B0329+54, are

also simulated with exactly the same model parameters used for modeling ��. In the simulation, the following

steps are taken:

(i) We get the model-predicted TOAs with �Tint = 106 s using Equation (6) over 36:5 yr, with the

same model parameters used for modeling .
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Table 1 Summary of all the best-�tting parameters. The �rst row list s the best-�tting values for

all the parameters, and the second row lists their 1� errors.

Parameters T1 T2 T3 k1 k2 k3 �1 �2 �3

(yr) (yr) (yr) (10�4) (10�4) (10�4) (rad) (rad) (rad)

Best-�tting 15.870206 49.03738 7.869207 4.05 1.89 2.58 0.4 96 0.071 1.937

1� error 5:1 � 10
�6

1:6� 10
�4

2:5� 10
�6 0.11 0.12 0.21 0.148 0.36 0.427

(ii) By �tting the TOA set f�(ti)g to

�(t) = �0 + �0(t � t0) +
1

2
_�0(t � t0)2; (8)

we get �0, �0 and _�0.

(iii) Then the timing residuals after the subtraction of � and _� can be obtained by

Tres(ti) =
�(ti) � (�0 + �0(ti � t0) + 1

2 _�0(ti � t0)2)

�0
: (9)

In Figure 3, we plot the reported timing residuals (from �g. 3 of H2010) w ith crosses, and the simulated

result of the model with three oscillation components with a solid line. Note that the simulated result is

not the �t of the model to the reported timing residual. It is a ctually the application of the model with the

parameters derived from the �tting of j��j, i.e. the �gure shows a comparison of the timing residuals of

the model’s prediction with the reported data. The RMS of the reported residuals and the differences are

0:0086 and 0:0048, respectively, i.e., nearly a factor of two reduction of timing noise in terms of RMS with

the application of the three-component model. In order to show the effectiveness of the three-component

model, we perform and F-test for the three-component model and the base model adopted in the TEMPO2

program (Hobbs et al. 2006). The F statistic is given by

F =
(�2

1 � �2
2)=(d1 � d2)

�2
2=d2

� 27; (10)

where �2
1 and �2

2 are Pearson �2 values, i.e. �2 =
P R2

i

�2

i

, where Ri is the residual of the i-th point, and

d1 = 133 and d2 = 124 are the number of degrees of freedom for the base model and three-component

model, respectively. Here we assume �i = �0, i.e, all data points have the same weight; this way, the result

of the F-test is independent of the exact value of �0. F � 27 means that the probability to reject the three

component model over the base model is less than 2:7 � 10�25, and thus the signi�cance of the three-

component model over the base model is higher than 10�. Our model implies that the timing residuals are

also caused by the magnetic �eld oscillation, and the quasi- periodic structures in timing residuals have the

same origin (which is determined by Equation (5)) as those in ��, _� and � variations. On the other hand, the

�t is worse as the time span increases up to � 30 years, which may be mainly due to the additional noise

components not included in �� variations.

The model includes an oscillation component with a period of � 49 years, however, it is hard to test

directly from the power spectrum of its timing residuals, since the period is longer than the observational

data span. However, there are still some features demonstrating its existence. For instance, the observed

data were reported about four years ago, and the model predicts that �� of the pulsar is now experiencing

another switch from positive to negative (as shown in Figure 1), which can be tested with the latest observed




