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Abstract—In computer vision, optical camera is often used as 
the eyes of computer. If we replace camera with synthetic 
aperture radar (SAR), we will then enter a microwave vision 
of the world. This paper gives a comparison of SAR imaging 
and camera imaging from the viewpoint of epipolar geometry. 
The imaging model and epipolar geometry of the two sensors 
are analyzed in detail. Their difference is illustrated, and their 
unification is particularly demonstrated. We hope these may 
benefit researchers in field of computer vision or SAR image 
processing to construct a computer SAR vision, which is dedi-
cated to compensate and improve our human vision by elec-
tromagnetically perceiving and understanding the images. 
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1 Introduction 

Human vision is a very intelligent system composed by eyes 
and brain. The eyes capture the image information, which is 
then submitted to brain for analysis, learning, recognition, 
classification, reconstruction, and determination. This system 
enables us to dynamically interact with the outside world, and 
it is so natural to us that we often neglect its operation. Com-
puter vision is aimed at duplicating the ability of human vi-
sion by electronically perceiving and understanding the im-
ages [1]. The optical cameras are often used as eyes to capture 
images, which are then processed by computer for recognition, 
analysis, and reconstruction of the objects. This field has re-
ceived intensive attentions and achieved great development in 
the past decades, and it has benefited our real life. Neverthe-
less, it still has a long way to go in order to pursue the intelli-
gence of human vision. 
If we replace optical camera with the synthetic aperture radar 
(SAR), the vision of computer will become completely differ-
ent. SAR acquires the image of object by actively transmitting 
an electromagnetic wave with certain frequency and polariza-
tion. Such an active operating mode makes it independent of 
solar illumination and thus allows an all-day imaging. SAR 
operates in the microwave region of the electromagnetic spec-
trum (usually between P-band and Ka-band), which can avoid 
the effects of clouds, fog, rain, and smokes, thus allows an 
almost all-weather continuous monitoring. The wave-object 
interaction excites a scattered wave which carries the charac-
teristic information of the object, like the reflectivity, shape, 

and orientation. By processing the scattering to synthesize a 
2D high spatial resolution image, we can achieve a perception 
about the object. Imaging SAR systems are usually mounted 
on moving platforms such as airplanes or satellites, and oper-
ate in a side-looking geometry. Airborne/Spaceborne SARs 
provide us microwave visions of the world from aerospace. 
Using SAR as eyes, the vision of computer may be compen-
sated and improved. With the launch and operation of many 
spaceborne and airborne SAR systems recently, the available 
high resolution SAR dataset increase dramatically, which 
makes the joint processing of multiple-view SAR images for 
accurate understanding and apperception of objects possible. 
The foundation of computer SAR vision requires us construct 
the SAR imaging model and epipolar geometry first. The re-
lated models for camera are not useful anymore because SAR 
takes a slant range imaging geometry. In view of this, a con-
cise imaging model and a rigorous epipolar geometry model 
of SAR were developed recently [2]. This paper is dedicated 
to give further comparison of SAR imaging and camera imag-
ing from the geometrical viewpoint. Section 2 first concisely 
presents the imaging model and epipolar geometry of camera. 
As comparison, the corresponding SAR models are then in-
troduced in Section 3. The difference is revealed and the con-
sistency is indicated. Section 4 finally concludes the paper. 

2 Camera Model and Epipolar Geometry 

2.1 Imaging Model of Camera 

Camera acts as a mapping from 3D space to 2D image, which 
involves in four different coordinate systems, i.e. the world 
coordinate system Ow-XwYwZw, the camera coordinate system 
Oc-XcYcZc, the physical image coordinate Op-xy, and the digi-
tal image coordinate system Oi-uv. The transformation from 
Ow-XwYwZw to Oc-XcYcZc usually involves a 3D rotation (R) 
and a translation (t) because of the geometrical misalignment 
between the two systems: 
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The pinhole camera model then determines the transformation 
from Oc-XcYcZc to Op-xy: 
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where f is the focal length. The finial digital image is a sam-
pling of the physical image, and this can be formulated as: 
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where fu and fv are the scales in horizontal (u) and vertical (v) 
image directions, respectively, which relate to the resolutions 
of the image, and θ is the angle between u- and v- axes, which 
accounts for the fact that the pixel grid may not be exactly 
orthogonal, and it is usually very close to π/2 [3]. 
Combining (1), (2), and (3), the relation between Ow-XwYwZw 
and Op-xy is obtained: 
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where K is the intrinsic matrix accounting for camera sam-
pling and optical characteristics: 
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Eq. (4) is usually simply expressed as 
  |  m PM K R t M   (6) 
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Eq. (6) is just the projective camera model, in which P is the 
camera matrix, and κ is an arbitrary constant. 

2.2 Epipolar Geometry of Camera 

Consider the stereo system composed by two cameras shown 
in Fig. 1, where C1 and C2 are the optical centers of the cam-
eras, I1 ↔ I2 is the corresponded projective image pair. Given 
a pixel m1 in I1, it corresponds to a series of points M1, M2, … 
in 3D space, and these points lie on the line through C1 and 
m1. When these points are viewed by the second camera from 
a distinct position, they will be mapped to the line L2 in I2, 
and this line is the epipolar line of m1. Given a pixel m2 on L2, 
there then always exists a constraint between m1 and m2. This 
relation is termed as the epipolar geometry of the stereoscope, 
also known as the image geometrical warp function because it 
maps a pixel position in I1 into a different pixel position in I2 
and forms the so-called image geometrical warp. The epipolar 
geometry of camera has been extensively studied in the field 
of computer vision, where the fundamental matrix and homo-
graphy are the widely-used descriptions of epipolar geometry 

when pinhole model is considered. Let the displacement from 
the first camera to the second be (R, t). Let M be the 3D point 
corresponded to pixels m1 and m2. Without loss of generality, 
we assume that M is expressed in the coordinate system of the 
first camera. We then have: 
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Eliminating M and the constants κ1 and κ2, we obtain the fol-
lowing fundamental equation 

 T T T 0  m K TRK m2 2 1 1   (9) 

where T is an antisymmetric matrix defined by t. The funda-
mental matrix F is defined as: 

 T T T T ,       F K TRK K EK E TR2 1 2 1  (10) 

where E is the essential matrix accounting for camera posi-
tion and orientation in the world coordinate system. Based on 
the correspondence set {m1

i ↔ m2
i} extracted by certain fea-

ture extractor, the fundamental matrix F can be robustly esti-
mated, then the camera matrix P can be simply retrieved from 
F. And using the method such as triangulation, we can finally 
locate the 3D point Mi corresponded to m1

i ↔ m2
i [3]. This is 

the task of 3D reconstruction from multiple images. 
If point M is in a 2D planar scene π = (nT, d)T, then m1 in I1 is 
uniquely mapped to m2 in I2. Such mapping can be expressed 
by the following transformation: 
 m Hm2 1   (11) 

where H is the plane-induced homography, which can be eas-
ily obtained from (8) that 

  T 1.d  H K R tn K2 1  (12) 

By fitting {m1
i ↔ m2

i} to (11), an estimation of homography 
H is also achieved, based on which we can then geometrically 

 
Fig. 1. Epipolar geometry of stereo camera vision system. 

 
Fig. 2. Geometrical description of SAR imaging. 



 

align the image pair I1 ↔ I2. This is the task of image regis-
tration, which is the foundation of many applications, such as 
object tracking and recognition, camera calibration and image 
reconstruction, as well as the digital elevation model inver-
sion and deformation mapping of the earth surface. 

3 SAR Imaging Model and Epipolar Geometry 

The formulation above indicates that the modeling of epipolar 
geometry involves in the imaging model of the sensor. SAR 
acquires image from the slant range, thus the 3D points which 
are imaged to the same pixel m1 in I1 locate in a Doppler cir-
cle formed by the intersection of the range sphere and Dop-
pler cone, as shown in Fig. 2. These points are then imaged to 
a series of pixels in I2 through the slant projection of the sec-
ond SAR sensor and compose the epipolar line of m1, which 
is not a simple straight line like L1 in Fig. 1 any longer. Hence, 
the description of SAR epipolar geometry with the fundamen-
tal matrix is inappropriate because it is only fit for the central 
projection. SAR image often covers a large ground scene with 
varied topography, thus the approximation of the 3D ground 
scene as a planar surface is inaccurate, thus the plane-induced 
homography is also inappropriate. In order to construct a rig-
orous description of SAR epipolar geometry, we seek to an-
other idea to achieve it directly from the SAR imaging model. 
The imaging model maps a 3D point M to its projective pixel, 
so we can relate the two imaged pixels m1 and m2 of M under 
the two SAR projections by combining the two SAR imaging 
models. And the imaging model should be accurate and con-
cise so as to achieve a rigorous and analytical epipolar model-
ing. The existing SAR imaging models can be generally at-
tributed into two categories, i.e. the physical model and em-
pirical model. The physical model takes into account of sev-
eral aspects that influence the acquisition procedure based on 
the range-Doppler equations (RDEs): 
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where R is distance from object (XP, YP, ZP) to antenna phase 
center (APC) (XS, YS, ZS), (VX, VY, VZ) is the velocity of plat-
form, λ is the wavelength of the transmitted wave, and fd is 
the Doppler frequency. Theoretically, we can obtain an accu-
rate SAR epipolar model from RDEs of the two SARs. But 
the model may not be concise because of the complex nonlin-
earity of RDEs, which will impact the further application. 
The empirical model is used when the system parameter, im-
aging geometry, and physical model are unavailable, and the 
polynomial and rational polynomial are often used: 
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which are in fact the extensions of homography and collinear-
ity equations obtained from central projection, respectively: 
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However, different from the central projection of camera, the 
equivalent projection center for slant range SAR imaging is 
not fixed, i.e. SAR is a variable focus system or multi-central 
projection system, thus the empirical model is also inaccurate. 

3.1 Concise Imaging Model of SAR 

Here we consider the general SAR imaging geometry shown 
in Fig. 3. The rigorous modeling of SAR epipolar geometry 
requires the imaging model be concise and accurate. In order 
to achieve this, we also construct four coordinate systems, i.e. 
the global coordinate system O-XYZ, the platform coordinate 
system O'-X'Y'Z', the imaging coordinate system o-xyz, and 
the image coordinate system oi-uv. O-XYZ is similar to the 
world coordinate system Ow-XwYwZw. Assume radar moves 
along a straight track of height H paralleling to the ground 
plane XOY, which indicates the influence from the curvature 
of earth and track is neglected, thus we mainly focus on the 
airborne SAR system. Nevertheless, it may also hold for the 
spaceborne SAR system if we can compensate those nonideal 
influences by using high precise platform-borne GPS and INS 
beforehand. O'-X'Y'Z' is used to characterize the attitude of 
platform (its counterpart is the camera coordinate system Oc-
XcYcZc), where O' is located at (TX, TY, H) in O-XYZ repre-
senting the initial APC, X' denotes the flight direction of the 
platform, Z' is parallel to Z, and Y' is orthogonal to X' and Z'. 
If the flight direction X' is β deviated from X, the transforma-
tion between O'-X'Y'Z' and O-XYZ can thus be expressed as: 

T

cos sin
 with .

sin cos1

X

Y

X X T

Y Y T

Z Z H

 
 

                              

β
β

R
R

0

0
(16) 

Fig. 3. General SAR slant imaging geometry. 



 

We further consider an imaging geometry that the antenna has 
a squint angle of α which anti-clockwisely rotates Y' to the 
incidence plane. This is a special characteristic of SAR imag-
ing. For squint SAR, we should compensate the scattering to 
the zero Doppler centroid first. For the sake of convenience, 
the imaging coordinate system o-xyz is further defined, where 
o is located at (TX, TY, 0) in O-XYZ, z is parallel to Z, y is par-
allel to the ground projection of the antenna boresight, and x 
is orthogonal to y and z. The compensation results in an anti-
clockwise rotation of α from X' to x, thus the relation between 
o-xyz and O'-X'Y'Z' is: 
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By combining (16) and (17), we can obtain the transformation 
from O-XYZ to o-xyz 
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where φ (= α + β) denotes the anti-clockwise rotation from X 
to x. After these, SAR imaging can be modeled as a geomet-
rical projection from ground plane to slant plane. Let C be a 
3D point within the radar beam with coordinates of (X, Y, Z) 
and (x, y, z) in O-XYZ and o-xyz, respectively. After slant 
projection, C is mapped to C' (xp, yp, zp). From the projection 
geometry in Fig. 3, we can easily obtain that 

 1, sin , .p p px x y P C P C y z H        (19) 

where θ is the local radar incidence related to the position and 
height of C. Thus the relation between slant projective plane 
and ground plane can be written as: 
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The counterpart of this transformation in camera model is (2). 
The final SAR image is the sampling of the projective plane. 
The image is defied in the image coordinate system oi-uv, the 
transformation between pixel (u, v) and projection (xp, yp, zp) 
can then be expressed as: 
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where (tx, ty, H) is the location of oi in o-xyz, sx and sy are the 
scales related to the azimuth and range pixel sizes ∆a and ∆r, 
respectively 
 1 2 ,  1 2x a a e y r rs s L s s B c       (22) 

where Le is the effective antenna aperture, B is the bandwidth 
of the transmitted signal, sa is the azimuth oversampling rate 
related to the PRF of the system, sr is the range oversampling 
rate, and c is the velocity of light. The transformation in (21) 
is similar to (3) of camera model. However, the pixel grid in 
SAR image can be generally kept exactly orthogonal, thus the 
retinal distortion is neglected here. 
By combining (18), (20), and (21), we have 
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Equation (23) finally relates a 3D point to its projective pixel 
in SAR image. Under the assumption that radar moves along 
a track paralleling to the ground plane, the RDEs is in fact 
consistent with (23) because any approximation has not been 
used when deriving the relation. Nevertheless, we decompose 
the complex RDEs into the multiplication of three simple 
matrices of physical significance based on the transformations 
among four different coordinate systems, which helps us per-
form a concise and accurate result. The model involves in the 
system parameters sx and sy, the imaging geometry parameters 
φ, Tx, Ty, tx, and ty, as well as the object parameter θ. It is in-
teresting to observe that (23) is similar to the linear camera 
model of (6): here R as well as TX, TY, sxtx, and syty correspond 
to (1) denoting the transformation from world coordinate sys-
tem to camera coordinate system by rotation and translation, 
M corresponds to (2) which indicates the transformation from 
camera system to physical image coordinate system by pin-
hole model, and S corresponds to (3) denoting the transforma-
tion from image physical system to pixel coordinate system 
by digital sampling. Therefore, the obtained model enables us 
to geometrically unify SAR imaging and camera imaging. 
Besides this, from (23) one can see that the point position (X, 
Y) is explicitly related to the pixel position (u, v), but the point 
elevation Z is implicit in the local incidence θ, thus the model 
may also enable a flexible strategy to model the epipolar ge-
ometry and to reconstruct the object. 

3.2 Rigorous Epipolar Geometry of SAR 

The side-looking of SAR makes the epipolar geometry depic-
tion in terms of fundamental matrix and homography inap-
propriate, we thus turn to construct the SAR epipolar geome-
try directly from the imaging model. This kind of epipolar 
geometry description is less used for camera because the fun-
damental matrix and homography are both good enough, but 
it facilitates us to model the rigorous epipolar geometry for 
SAR from the developed concise imaging. 
We consider a general stereoscopic configuration here. Let I1 
and I2 be an image pair acquired by different SAR systems 
from different imaging geometries. For a 3D point (X, Y, Z) in 
O-XYZ, if its two projective pixel positions in I1 and I2 are (u1, 
v1) and (u2, v2), respectively, according to (23) we obtain 
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where the subscript 1 indicates the parameters of I1. Based on 
(23) and (24), for pixel (u2, v2) of I2 we can have 
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here the subscript 2 indexes the parameters of I2. By eliminat-
ing the object position (X, Y), we can then relate the two pix-
els. Equation (25) can be further rearranged as (26), shown at 
the top of the next page, where A= S2M2R2R1

-1M1
-1S1

-1, Δφ (= 
φ2 – φ1) is the rotation between the two imaging systems, Bx 
and By are the projections of BX (= TX1 –TX2, denotes the initial 
separation between the two imaging systems in X-direction) 
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and BY (= TY1 –TY2, denotes the initial separation between the 
two imaging systems in Y-direction) in x- and y-directions of 
the second SAR imaging system, and they denote the along-
track and cross-track baselines, respectively. Equation (26) is 
an affine transformation which models the epipolar geometry 
of a general SAR stereo. Interestingly, it is similar to the 
plane-induced homography in (12): here S1M1 and S2M2 cor-
respond to the intrinsic matrices K1 and K2 of the two cameras, 
R2R1

–1 as well as tu and tv correspond to the rotation and trans-
lation R – tnT/d between the two cameras. However, different 
from the fundamental matrix and homography which are in-
dependent of object, the SAR epipolar geometry in (26) is 
object-dependent because the local radar incidences θ1 and θ2 
vary with each 3D point. Nevertheless, (20) and (23) show 
that, for slant range imaging, the position and elevation of a 
3D point are wrapped into the imaged pixel and related to the 
local incidence. Therefore, given the imaging parameters and 
pixel correspondences, we can obtain a retrieval of incidence 
from (26), then the 3D geometry of object may be achieved 
based on the projective pixel positions. Therefore, the image 
reconstruction in computer SAR vision seems more straight-
forward than that in computer optical vision, as detailed in [2]. 

4 Conclusions 

The slant range imaging of SAR makes the equivalent projec-
tion center unfixed. SAR is therefore a variable focus system 
or multi-central projection system. This paper is dedicated to 
give a comparison of SAR imaging and camera imaging from 
the geometrical point of view. A unified expression of camera 
imaging model and SAR imaging model is obtained. Never-
theless, the side-looking makes the SAR imaging model vary 
with each object position, besides introducing an extra squint-
related rotation. We thus cannot use a fixed model to express 
the mapping from 3D space to 2D SAR image. The epipolar 
geometry models the relation between the two pixels of a 3D 
point projected by a stereoscope. The central projection of 
camera enables a pixel position in the first image to be corre-
sponded to a straight line in the second image. Such relation 
is described in terms of the fundamental matrix. It can be also 
expressed by the homography if the considered scene is pla-
nar. However, these two descriptions of epipolar geometry are 
all inappropriate for SAR because slant range imaging makes 
the epipolar line not be straight anymore, and SAR image 
often covers a large ground scene with varied topography 
which cannot be approximated as a planar surface. Hence, we 
turn to construct the rigorous SAR epipolar geometry directly 
from the imaging model. Nevertheless, its unification with the 

plane-induced camera homography is also clear. The obtained 
SAR epipolar geometry also varies with each object position, 
i.e. we cannot use a fixed homography to model the geometric 
wrapping of two SAR images. This makes the image registra-
tion more difficult. However, such object-dependent epipolar 
geometry is welcome for the retrieval of 3D geometry of ob-
ject. Hence, the 3D reconstruction of object in computer SAR 
vision thus seems more straightforward than that in computer 
optical vision. 
The consistency on imaging model as well as epipolar geome-
try indicates the geometrical unification of SAR imaging and 
camera imaging in a sense. Nevertheless, this does not mean 
that we can unify the two sensors in physics. Our focus in this 
paper is paid on the geometrical part of the imaging. In fact, 
the side-looking also impacts the physical appearance of SAR 
image. The detailed comparison of SAR imaging and camera 
imaging from the electromagnetic scattering and signal point 
of view was presented in [4].We hope such geometrical con-
sistency will benefit researchers in field of computer optical 
vision or SAR image processing to construct a computer SAR 
vision. As an interdiscipline of the two fields, computer SAR 
vision is dedicated to improve and compensate human vision 
by electromagnetically perceiving and understanding the im-
ages, which will make our view of the world more colorful. 
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