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The previous experiments which provide information on the (3770) to non-DD decays are re-
viewed. Three approaches of searching for the non-DD decays are discussed in detail. It is also point
out that the search for the non-DD decays of the 1(3770) is very important for the understanding

of the dynamics of charminum decays.
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I. INTRODUCTION

The lowest charmonium resonance above the charmed
particle production threshold is (3770) (shortened as

¥") which provides a rich source of D°D° and Dt D~
pairs, as anticipated theoretically [1]. However, non-DD
decays of the (3770) was also expected theoretically
and was searched for experimentally almost two decades
ago. The OZI violation mechanism [2] was utilized to
understand the possibility of the non-DD decays of the
¥ (3770) [3], and the pioneer experimental investigations
of the non-DD decay modes could be found in Ref. [4].

After a period of silence, the study of the non-DD de-
cays of the " gets renaissance as more and more data
are collected at 9" by BES-II and CLEOc [5]. Exten-
sive studies have been made for exclusive non-DD de-
cay channels [6-10], of which the most prominent one is
the hadronic transition of ¢ — J/¢nTm~ once sought
by Mark-IIT [4]. Recently both BES and CLEOc col-
laborations reported their measurements for this chan-
nel [11, 12], which are in marginally agreement with each
other. However, except for J/¢r+n~ final state, no sta-
tistically significant signals of the non-DD decays at ¢
are presented up till now. One possible reason is that the
existing data samples are still not large enough to search
for the channels of such small branching fractions.

Besides the searches for the exclusive modes, there is
the search for inclusive decays. In fact, the indication
of a substantial non-DD decays of the 1" was originally
caught attention from the comparison of the cross sec-
tions of the inclusive hadrons and DD at the " peak.
Table I summarizes the measurements of the resonance
parameters and the observed cross section of the inclusive
hadronic decay, and Table II summarizes the measure-
ments of the DD cross section reported by BES-IT [13]
and CLEOc [14] collaborations using either double-tag
or single-tag method. The simple average of the values
in the two tables gives 0°%*(¢"") ~ 7.75 nb and ¢(DD) ~
6.27 nb, respectively, with differrence of about 1.5 nb
(about 19% of the total cross section of the " pro-
duction), which implys the non-DD decays of the ¢
is important. However, the existence of substantial non-
DD decays is not unambiguous due to the poor statistics
of the data samples and the complexity of the analysis.
In addition, results from different experiments are con-

sistent with each other only marginally. Moreover, for
inclusive measurement, the contribution of the non-DD
decays has been nelegected in previous experiments in
measuring the 1" resonance parameters.

Besides the experimental motivations, there are inter-
ests to look into this problem from the theoretical point
of view. In Ref. [20], it is estimated that at most 600 keV
(~ 2.5%) of the ¥"" total width of (23.6 £2.7) MeV is due
to the radiative transition, and perhaps as much as an-
other 100 keV (~ 0.4%) is due to the hadronic transition
to J/vymm. All these together are far from accounting for
a deficit of 19% of the total ¢" width.

In a most recent paper [22], based on the available
experimental information of J/¢ and ¢’ decays, it is es-
tiamted that the charmless decay of " by virtue of the
S- and D-wave charmonia mixing scheme [23] could be as
large as 3.1 MeV or 13% of the total decay width of " .
By charmless decay, we exclude those decay modes with
either open or hidden charm. If we take into account
also the charmonium transition contributions of 3% [20]
(2.5% for radiative transition and 0.34% for J/¢n7), the
total non-DD decay of " as large as 16% is conceivable
in the 25-1D mixing scenario.

With the expected more data at ¢" from the running
CLEOvc, it is feasible to search for the possible large non-
DD decays. Furthermore, we notice that the accurate
determination of certain exclusive final state can sup-
ply the knowledge of the phase between the S-wave and
D-wave matrix elements. Such information can provide
some clues concernning the dynamics of the OZI sup-
pressed decays of charmonium.

In this paper, we concentrate on the experimental as-
pects of the non-DD decays of the . In the following
sections, we discuss the exclusive, the quasi-inclusive and
the inclusive methods for the non-DD searching, espe-
cially, we shall expound some of the technique details in
the handling of the experimental data which were over-
looked in previous measurements.

II. EXCLUSIVE METHOD

One may measure the branching fraction of each indi-
vidual charmless decay mode. If 4" is produced in ete~
collision, the nonresonance continuum amplitude could
be important, its contributuion, and its interference with



TABLE I: Resonance parameters and total cross sections at 1. T'yr is the full width, I'ce the partial width to eletron pairs,
o°% the observed cross section at resonance peak, Ryfiat R value to describe the continuum contribution, 0®°"™ Born order

cross section. It should be noticed that the uncertainty of o
without considering the correlation among them.

Born

is obtained from those of the quantities used for calculation

Experiment/ My Tyn Tee oobs Riiat gBern oobs
Accelorator (MeV/c?) (MeV/c?) (eV/c?) (nb) (nb) gBorn
LGW/SPEAR [15] 3772 £ 6 28L5 370£90 103 +£2.1 ~2.8° 13.6 4.1 0.75
DELCO/SPEAR [16] 3770 £ 6 2445 180 % 60 ~ 6.1 ~ 2.5% 7.7+3.0 0.79
MARKII/SPEAR [17] 3764 £5 24+5 276 £ 50 9.3+1.6 2.22 £0.06 11.9+3.3 0.78
CBAL/SPEAR [18] 3768 + 2 34+8 283 £ 70 6.7+ 0.9 2° 8.6 +£2.9 0.78
BESII/BEPC [19] 3773 £ 1 26 +4 247 £ 35 ~ 6.4° 2.44 £0.08 9.8 +2.0 0.65
BESII/BEPC [20, 21] 3772 23.2 — 7.7+ 1.1 ~ 2.16% 12.1 £1.9° 0.64

% The value estimated from the corresponding figure provided by literature or thesis, only for reference.

b The R is only treated as constant in the fitting.
¢ Absent values are adopted from PDG for calculating oo™,

TABLE II: Comparison of cross sections o(DD) = o(ete™ — 4" — DD), in nb. Note that o(D°) is defined to be twice

o(D°D") and o (D) is twice o(DTD™).

Collaboration Vs (GeV) a(D™T) a(D°%) 20(DD)
MARKIII[? | 3.768 3.3570 36 £0.24 4.487035 4+ 0.37 7.837058 £0.52
MARKIII[? | 3.768 42+0.6=+0.3 58+0.5+06 10.0 0.8+ 0.8
Vs (GeV) o(D*D") o(D°D") o(DD)
BESIT"[13] 3.773 2.52 +0.07 £0.23 3.26 & 0.09 + 0.26 5.78 £0.11 £0.38
CELO?[14] 2.58 £0.15 £ 0.19 3.90 +0.42 £0.28 6.48 +0.44 + 0.49

¢ Preliminary

the 1" decay amplitude must be considered in the anal-
ysis of the experimental data [24]. This was discussed
in detail for the vector-pseudoscalar (VP) modes [25],
in which the observed cross section depends on the in-
terference pattern between the " amplitude and the
continuum amplitude. If the phase between the strong
and electromagnetic interactions is —90°, as suggested in
Ref. [26], such interference is destructive for pm, wn, wy',
K** K=, bym and K™K~ modes but constructive for ¢,
¢n' and K*° K0 modes. Destructive inteference between
the resonance and continuum means that the observed
cross section on top of the resonance could be smaller
than the continuum cross section. The experimental re-
sults on pm and wn modes|[8] demonstrate this inteference
pattern.

As a matter of fact, many subtleties concerning the ef-
ficiency determination and Monte Carlo simulation have
to be taken into consideration in order to acquire correct
and accurate measurement of the exclusive decay at the
" peak in ete” experiments. A furthermore expound
of such measurement is presented in Ref. [27].

III. QUASI-INCLUSIVE METHOD

The exclusive method gives the branching fraction of
each individual charmless decay mode, but provides no
information on the total fraction of the non-DD decays.

In this section, we develope a quasi-inclusive method, by
which we can derive the total non-DD decay branching
fraction from the inclusive measurement of certain paricle
or final state.

Certain final state f may be produced from the direct
" decays, and /or from the cascade DD decays, as shown
below:

,¢Jll

NS

DD

f

The following qutantities are needed to describe such
a process in detail

e B(y" — f): the total branching fraction of final
state f in ¢" decay;

e B(y" — DD): the branching fraction of DD in ¢"
decays;

e F(DD — f): the branching fraction of final state
f in DD decay;

e B(DD — f): the branching fraction of final state
f from non-DD " decay (direct 9" decays).



So we have the following relation

B" = f) = B(y" - DD) - F(DD — f) (1)
+ B(DD - §) .

According to the above relation, in order to find out
B(y" — DD), or equivalently [1 — B(¢" — DD)], we
need to know B(¢" — f), F(DD — f) and B(DD — f).
So we first discuss how to determine these branching frac-
tions experimentally.

A. Determing F(DD — f)

The D meson decay branching fraction (F;) was orig-
nally measured through the production (op - F;), then
converted into D decay branching fraction (F;) by em-
ploying the cross section op at " peak [15, 28]. Unfor-
tunately, as indicated in Table I, there are large discrep-
ancies among the measurements of op. Furthermore, in
previous measurements ¢" was assumed solely or sub-
stantially decay into DD, which is questionable. We will
return to this point in detail in section IV.

Twenty years ago, a new technique was developed by
MARK IIT group [29] to derive the D meson branch-
ing fraction without relying on the measurement of the
D-production cross section. To determine the indivial
branching fraction (F;), together with the number of pro-
duced DD pairs (N), the corrected number of single tags
(Si) and double tags (D;;) are employed in a x? mini-
mization fit, using the following expressions:

Si = 2N-7:i€i — QNE}-@]:]Oé:] y
J
p.. = | 2NFiFje; (i #37) ,
YT NFew (i=7),

where ¢; is the efficiency for reconstructing a single tag
in the ith D decay mode, ¢;; is the efficiency for re-
constructing a double tag for DD decay mode i and j,
and aﬁj is the efficiency for reconstructing a single tag
of mode 7 while simutaneously reconstructing the entire
event as a double tag of mode 7 and j. The second term in
the expression for S; removes from the single-tag sample
those tags which also appear in the double-tag sample.
This subtraction leaves the two samples independent and
eliminates the directly correlated errors. Comparing the
number of observed single tage (S;) events with double
tags (D;;) events yields the branching fraction of decay
mode j without referring to the production cross sec-
tion. In practice, the S; serves to determine the relative
branching fractions, while the D;; sets the absolute scale
of the branching fractions.

By virtue of the approach introduced above, we ob-
tain F(DD — f) for a final state f without measuring
prodcution cross section. In fact, any measured results
of F(DD — f) by the approach can be used for the
following analysis even if the results are from different
experimental groups.

B. Determing B(y)" — f) and B(DD — f)

The B(y¥" — f) is obtained by scan experiments.
Avoiding abstract, we take the inclusive Kg final state
as example to explain the scan process.

Usually at least two scan curves are needed, one is the
inclusive hadron final state, from which we determine the
total decay width of 0" (T';); the other is the inclusive Kg
final state (Kg plus anything), from which we determine
the partial decay width of this inclusive mode. The ratio
of these two widths give the branching fraction B(¢" —
Kgs + anything).

At the energy in the vicinity of ", besides the "
resonance, there are other cross sections due to the non-
resonace continuum process as well as the tails of the .J/¢
and ', which together account for a large proportion
of the measured cross section at the 1)"" peak. Accord-
ing to the decay topology, the inclusive hadron events
are divided into two catorgeries, the DD events and the
DD-less final states. Here we coin a word “DD-less fi-
nal states” to depict all the processes which do not go
through D or D, including non-resonace process, tails
of J/v and ¢', and the non-DD decays of the 9"". By
non-DD decay, we mean the ¢" decays which do not go
through D or D. Here the correct Monte Carlo simu-
lation deserves specail attention. For example, the non-
resonace continuum process can be simulated by Lund
model [30]; while the J/1, ' tails and DD decay by the
Monte Carlo which describes J/v, ' and D decays re-
spectively [31, 32]. The synthetic hadron efficiency €pqq
is expressed as

Ks . _Ks Ks | Ks
Ks _ oL %pr T €D %pD 2)

€ =
had KS KS ’
opr t%pb

where € and o denote the efficiencies and the correspond-
ing cross sections, the subscript DL indicates the DD-
less decay, while DD the DD decay, the subscript Kg
represents the inclusive hadron final state containing Kg
particle. However, opr and agl% are to be determined
from experiment. Fortunately, according to Eq. (2), what
we need to know is the ratio of opr, to Ugf), which could
be acquired experimentally as explained below.

Fig. 1 shows the momentum distributions of the inclu-
sive Kg events due to the DD (histogram) and the DD-
less (dots with error bar) decays, which are simulated
by DDGEN and Lund generators, respectively. With the
two generators, we obtain the efficienies epy and eg%.
For the real data sample, its momentum distribution is
the synthetic one of the DD and the DD-less decays
with certain proportion of each. We fit the data distribu-
tion with those of Monte Carlo distributions as shown in
Fig. 1, then obtain the numbers of the observed events of
these two processes, which are denoted as npy, and ngfj.
Utilizing the relation

n = Loe (L: expriment lominosity) ,
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FIG. 1: Ks momentum dEtributions: histogram for inclu-
sive K5 final state from DD de@ys; dots with error bars for
inclusive K final state from DD-less decays.

we get
K
nprL-€pp _ ODL
Ks - "Ks - (3)
"pp €DL  Opp

In short, we determine B(y)" — f) by scan experiment.
As to B(DD — f), we notice that in Fig. 1, most of the
momentum from DD decay is less than 1 GeV, so a re-
quirement of the momentum greater than 1.1 GeV elim-
inates all the DD decay event, while leaving the events
from DD-less decay. Using such events, we obtain an-
other scan curve. Fit this curve together with the curve
of the total inclusive hadrons, we determine B(DD — f).
This process is similar to the determinatin of B(¢)" — f),
but only one efficiency €py, is needed.

C. Deriving B(y" — DD)

Since B(¢"" — f), F(DD — f) and B(DD — f)
are obtained experimentally, by solving Eq. (1), we get
B(y" — DD), then acquire the non-DD decay branching
fraction [1 — B(y" — DD)].

Next we understand Eq. (1) from physics point of view.
We introudce a new quantity defined as

B(DD — f)

fuﬂ%%ﬁzl—BW”%Dﬁf

which is the ratio of the branching fraction of non-DD
decay for the final state f to that of the total non-DD
decays. Then Eq. (1) reads

B" — f) = B(" — DD)-F(DD - f)
+ [1-B@W" - DD)]-F(DD — f) .
“)
We chose B(y)" — f) as ordinate, and B(¢)" — DD)
as abscissa, which varys from 0 to 100%. For certain

B (y'-f)

0 100
B (v"~DD) (%)

FIG. 2: Diagram for the determination of B(¢)” — DD). The
horizontal line indicates a certain B(y)" — f) with shaded
band as its uncertainty; the askew line is drawn based on
information of B(DD — f) and B(DD — f); the arrow in-
dicates the B(¢)"" — DD) determined from experiment with
hatched area as its uncertainty.
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FIG. 3: Diagram for the determination of B(¢)" — DD). The
horizontal line indicates a certain B(¢'' — f) with shaded
band as its uncertainty; the solid askew line corresponds to
F(DD — f) = 0 for certain final state f while the dashed
askew line corresponds to F(DD — f) = 0 for certain final
state f.

final state f, B(¢)" — f) corresponds to the horizontal
line, as shown in Fig. 2, where the shaded band denotes
the uncertainty of B(y)" — f). If B(¢" — DD) = 0,
then B(¢" — f) = F(DD — f), which means all
events of final states f coming from non-DD decay; if
B(y" — DD) = 100%, then B(y" — f) = F(DD — f),
which means all events of final states f coming from DD
decay, or equivalently the complete absence of the con-
tribution from non-DD decay. Without losing general-
ity, we assume that F(DD — f) > F(DD — f), then
we obtain an upward line in the coordinate, as shown
in Fig. 2. Similarly, if we assume that F(DD — f) <



F(DD — f), we obtain a downward line in the coor-
dinate. The point of interaction gives rise to the de-
termination of B(¢" — DD), which is denoted by the
arrow in Fig. 2. The hatched area indicates the uncer-
tainty of B(1)"" — DD), which is due to the interaction
of the askew line with the uncertain band of B(¢)" — f).
Here we notice that the smaller the slope of askew line in
Fig. 2, the longer is the interaction line with the uncer-
tainty band, which means the larger uncertainty in the
determination of B(¢"" — DD). On the contrary, if the
slope of the askew line is larger, we obtain comparatively
smaller uncertainty on B(1)" — DD). In another word,
to obtain B(y)" — DD) as accurate as possible, we se-
lect those final states which have as large as possible the
difference between F(DD — f) and F(DD — f).

One special case is that F(DD — f) = F(DD — f),
according to Eq. (4), we have B(y)" — f) = F(DD —
f) = F(DD — f). Under such circumstance, we can
not get any information about the total non-DD de-
cay. In another word, if the scan experiment obtains
the B(y" — f), which is equal to F(DD — f), we
could neither confirm nor deny the existence of non-DD
decay. Another special case is F(DD — f) = 0 or
F(DD — f) = 0. For example, for baryon anti-baryon
(BB) final state, which does not come from DD decays,
F(DD — f) = 0. Under such circumastance Eq. (1)
becomes

BW" = f)=[1-B%"— DD)]-F(DD - f) . (5)

According to the above equation, B(y" — f) =
F(DD — f) for B(¢" — DD) = 0 while B(¢)" — f) =0
for B(y" — DD) = 1. So mathematically, when
B(DD — f) = 0, Eq. (5) provides a downward line in
coordinate as shown in Fig. 3, where the only point of
interaction is at B(¢"" — DD) = 0. Physically, at the
start point of abscissa in Fig. 3, Eq. (5) merely gives a
fact that all the final states f events come from non-DD
decay since its decay through DD is forbidden. As for
other values of B(¢"" — DD), we could not get any in-
foramtion because the two lines do not intersect.

If the uncertainties due to F(DD — f) and F(DD —
f) are taken into account, the askew lines in Fig. 2 and 3
become bands, just like the horizontal ones. Under such
circumstance, all discussions above are valid except for
the uncertainty of the determined B(y)" — DD), which
becomes larger.

IV. INCLUSIVE METHOD

In this section, we first retrospect the previous scan
experiments, and point out drawbacks of these experi-
ments, then put forth a new method which determines
the inclusive non-DD decay directly with small system-
atic errors.

A. Scan experiment
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FIG. 4: The observed cross section in the vicinity of the "
resonance calculated with parameters provided by PDG. The
total observed cross section o' conventionally divided into
four parts: the cross section from non resonant contribution
onr, from radiative tails of J/v (o/4) and ¢’ (o), and
cross section from resonance ¢’ (o).

Fig. 4 draws diagrammatically the observed cross sec-
tion in the vicinity of the " resonance calculated with
parameters provided by PDG [33]. The total observed
cross section ¢! is usually expressed as

UtOt:UNR+U-J/¢' —+—U‘,¢,r—|—0’¢//, (6)

which contains four parts: the non-resonance cross sec-
tion o g, the radiative tails of .J/v (0/y) and ¥’ (oy/),
and the " resonance cross section (oy~). The non-
resonance cross section is usually expressed in terms of
R value and the p pair cross section st Born order as
ong = R-o(ete™ — ptp~). The Breit-Wigner for-
mula is adopted to depict the resonances of the J/1, 1’
and ", where the total decay width of the "' is energy
dependent:

].27TI‘66F¢H (Ec.m.)

i (Bem.) = ’
oy (Eeom.) (E2,, — M2,)2 + T2, (Bem) M,
with
3 3
Ppo Pp+
Ty (E =C !
P ( c.m.) r 1+ (rng)2 1+ (rpD:‘:)2 ( )

where p is the D or D¥ momentum, r is the classical



interaction radius, and Cr is defined as follows:

F " M "
Cp = : v ( : )
pDo pD:l: :|
1+ (rppo)? 1+ (rpp+)? P

Here T'yi(Myr) is the 9" total decay width given by
PDG [33]. The radiative correction scheme used by
SPEAR experiment, is based on the work of Bonneau
and Martin [34] and that of Jackson and Scharre [35].
The former only calculated to o order which is insuf-
ficient for resonances; while the latter made some mis-
takes [36, 37]. The drawbacks due to the treatment of the
radiative correction with these two schemes were studied
for Z in Ref. [36] and for narrow resonances of ¢ and T
families in Ref. [37]; but no such study on ¢" has been
conducted so far. BES treats the radiative correction
based on the structure function approach which achieves
0.1% accuracy [38]. The effect of the radiative correction
can be seen from the ratio between the observed cross sec-
tion ¢°%* and the Born order cross section o?°™, which
is defined as

Born _ 1271,
Mi”]_—‘wrr

(From the last column of Table I, we see that the trea-
ment of the radiative correction was consistent among
different experiments at SPEAR. However, the resonance
parameters from different experiments differ significantly.
The reason remains unknown.

Another problem in previous analyses [15-18] is that
the non-DD branching ratio was neglected in the fit-
ting of the 9" resonance curves. Since light hadrons
have much lower thresholds than DD, a larger non-DD
branching ratio affects both directly the shape of the reso-
nance curve and indirectly through the energy-dependent
total width. Specially, taking into account the non-DD
decays, Eq. (7) is revised by including another term, that
is

err (Ecm) = Cf)(

3 3

Ppo Pp+ C _
{1 + (rppo)? + L+ (rpp+)? + nOIl—DD:| ’

where Cpon_pp is proportional to the partial width of
the non-DD decays, and

F H(M H)
Cl = - 3¢ v
|: pDO pDi C _:|
THpp)? " T ppe)® T MO0 PPL|
c.m. =Myt

With the Con-pp term in the expression for I'y., the
fitting of the resonance curve to extract the resonance
parameters is done together with the fitting of the DD
or the non-DD cross section. In this procedure, the non-
DD decay branching fraction is extracted together with
the resonance parameters.

B. Leading particle method
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FIG. 5: Momentum distributions of the leading particle: his-
togram for DD events; dots with error bars for D D-less events
(not normalized). The arrow indicates the cut at 1.1 GeV.

At first sight, it seems easy to measure the DD cross
section because the DD decay has distinctive event topol-
ogy and can be selected without ambiguity. But it is
impractical for the scan experiment due to its low statis-
tics. So we turn to the measurement of the D D-less cross
section, and take advantage of the salient kinetic feature
of DD-less decays, as mentioned in section III B for final
state with Kg. This kinetic feature holds for all kinds of
final states, which can be seen from a rough estimation.
Since the mass of the 9" is just above the DD, the D and
D are almost static. Their decay products have momen-
tum less than 932.3MeV /c, which is half of the D° mass.
So the particles with momentum greater than this value
must come from processes other than D or D decays.
With this distinction between DD decay and DD-less de-
cay, we do not need the particle identification, but merely
select the particle having the largest momentum, which
is called the leading particle in a hadronic event. Fig. 5
shows the Monte Carlo simulation of the momentum dis-
tributions for the leading particle from DD (denoted by
histogram) and D D-less decays (denoted by dot with er-
ror bar). It can be seen that the leading particles from
DD decay all have momentum less then 1.1 GeV. So a
cut of p < 1.1 GeV on momentum eliminates almost all
events from DD decays, while the surviving ones must
come from D D-less decays. This gives a direct measure-
ment of DD-less decay without the need to tag certain
particle in the final states. We refer to this method as
the leading particle method.

In the appendix, we present the formulae for 1" scan.
Based on these formulae, the expected cross sections in
the vicinity of " resonance are depicted and drawn in
Fig. 6. The upper part of the graph is the total inclusive
hadron cross section; while the lower part are the curves
of cross sections from D D-less decays, with the assump-



tion of non-DD decay branching fraction to be 0, 10%
and 30%, respectively.
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FIG. 6: The cross section in vicinity of the " resonance cal-
culated with parameters provided by PDG. In the top graph,
the curve is the total cross section. In the bottom graph,
only DD-less decay cross section is drawn, with assumption
of non-decay fraction as 0, 10% and 30%, respectively.

The prominent advantage of this method is the high
sensitivity and good precision. Since the fraction of the
non-DD decay is determined by the ratio of two curves
from the same scan measurement, most of the systematic
errors are canceled out, a small systematic uncertainty is
expected from this method.

C. Comments

Recently, CLEOc reported the measurement of non-
DD cross section [39]:

Onda = (—0.01 £ 0.08540)nb |

which means the non-DD decays, even exist, are less than
0.69 nb at 90% confidence level, or correspond to an up-
per limit of 10.8% of the total decay width at 90% confi-
dence level, if the total ¢)" cross section is taken from the
result by the same group oy = (6.38+£0.0873:38)nb [39].

Since non-DD searching is highly important and very
interesting, so it is good to have other measurements by
alternative methods to confirm this result. In addition,
in the CLEOc analysis, the interference between reso-
nance and continuum due to electromagnetic interaction
is taken into account. To improve the accuracy further,
other interference effects such as that between different
resonances, need to be considered. The intereference be-
tween strong decay process and non-resonance continuum

process may also give a non-vanishing contribution due
to SU(3) flavor symmetry breaking. Although one may
expect these interference effects to be negligible, more
careful studies are needed to reduce the systematic un-
certainties. We leave such meticulous analysis to a seper-
ate work in the future. Here we merely point out that
the interference effect considered in Ref. [39] does not af-
fect the measurement for non-DD decays by scan method
suggeted by us here as long as the I'.. of ¢’ is treated
as a free parameter in the data fitting. This is due to
the fact that the interference term varies smoothly in the
vicinity of 9" peak.

V. SUMMARY

In this paper, we put forth three methods for the
searching for the non-DD decays of the ¥ in ete™ ex-
periments: the exclusive, the quasi-inclusive and the in-
clusive methods.

First, for the exclusive method, we call attention on
the contribution of the non-resonance virtual photon, and
more importantly, its interference with the resonante de-
cay amplitude. Besides the confirmation of the existence
of the non-DD decays of the 1", the measurement of
the exclusive channel is very important for the interpre-
tation of the “pm puzzle” in J/v¢ and 9" decays and the
determination of the phase between the strong and elec-
tromagnetic interactions in such decays.

Second, for the inclusive method, we propose a new,
so-called leading particle method. This method tags a
large fraction of the non-DD decays (~ 10%) without
DD contamination, thus is more sensitive than the other
methods in the determination of the total branching frac-
tion of the non-DD decays of the 1)".

As to the quasi-inclusive method, it can be used as
a cross check for the measuring of the total branching
fraction of the non-DD decays.
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APPENDIX: CROSS SECTION AT ¢’ MASS

The total cross section at the ¢ peak can be expressed
as the sum of all possible resonances and non-resonance
contributions. Due to Initial State Radiation (ISR) and
other effects, such as energy spread, what is obtained
experimentally is the so-called observed cross section in-
stead of the one at Born order.

A remark of symbol is in order here. In the follow
text, we use symbol W to denote the C.M. energy of



the colliding beams, which is also expressed by E. ,,. in
the literature. The half of W indicates the beam energy,
often written as Epeqm = W/2, while the square of W
indicates the energy transform, often written as s = W?2
in theoretical papers.

1. ISR Correction

The ISR correction is calculated by the structure func-
tion approach [38, 40, 41], which yields the accuracy of
0.1%. In this scheme, the radiatively corrected cross sec-
tion is expressed as

1-W2 /w2
o(W?) = /0 dx 5[W?(1 — 2)]F(z, W) (A.1)

where W, is the cut off of the invariant mass in the event
selection, and

N i U0
70 = =

with o2 (W) the Born order cross section and II(W?) the
vacuum polarization. In Eq. (A.1)
F(a,W) = Bz 16" (W) + 6%(z, W), (A2)

with

Here the conversion of bremsstrahlung photons to real
ete™ pairs is included in the cross section which is the
usual experimental situation. Thus there is cancellation
between the contributions of virtual and real ete™ pairs
in the leading term [41].

The physical cross section at Born order of the process
ete™ — Res. — f (where f denotes a certain kind of
final states) is expressed by the Breit-Wigner formula

12710 T
(WZ _ M2)2 + I‘2M2 ’

O'BW(W) —

where M and T are the mass and total width of the res-
onance; I'?, and T'; are the partial widths of the ete™
mode and the final state f respectively. Here I'C, de-
scribes the coupling strength of the resonance to eTe™
through a virtual photon. For example, in potential

model, 'Y, is related to the wave function at the origin
1(0) in the way

402 Q7|4(0)
M2 ’

where @, is the charge carried by the quark in the quarko-
nium and « is the QED fine structure constant. Since the
decay of a quarkonium 17~ state to eTe™ pair is through
a virtual photon, there is always vacuum polarization as-
sociated with this process. So the experimentally mea-
sured eTe™ partial width, denoted explicitly as T¢*?, is
related to I'?, by the expression

0 _
Fee_

p_ T
O 1-I(ME)P

We follow the convention of Ref. [37] which is adopted
by PDG. In this convention I'.. means I'S?P. For res-
onances, if they decay predominantly to light hadrons,
with threshold (W,,) far less than the data taking en-
ergy (W), that is W — W,,, > T, the integral of Eq.(A.1)
is insensitive to W,,,, because the Breit-Wigner formula
behaves like a § function. One can put the upper limit
of the integration to 1, so the radiatively corrected reso-
nance cross section is

(W) = /0 de Flz, W)ePVIW2(1—2)],  (A3)

with
1270 Iy

BW _
g (W) - (W2 _ M2)2 +T2p2

(A4)

2. Observed Cross Section

The total observed cross section ot at the )" mass is
usually expressed as

tot

o' =ONR+ Oy F Oy F Oy, (A.5)

which contains four parts: the cross section from non-
resonant contribution oypg, from radiative tails of J/¢
(07/¢) and ¥’ (oyr), and the cross section from resonance

ow).

a. Non-resonance section

The non-charm contribution is conventionally ex-
pressed by R value

ong=R-o(eTe” = ptpT),
with
LY "
+o- ) —
— = i
o(eTe” 2 uTnT) = g

Here R indicates the contribution from light quarks[42]
(u, d and s).



b. Tails due to J/v and '

The resonances such as J/v and v', are narrow with
widths from tens to hundreds keV, while the beam energy
spread of ete™ colliders is at the order of MeV. If the
resonance width is comparable or smaller than the beam
energy spread, the observed resonance cross section is
the one by Eq. (A.1) folded with the beam energy spread
function G(W, W'), which is usually taken as a Gaussian:

N e 0§
J2A P 2A? ’

with A the standard deviation of the Gaussian distri-
bution, or the beam energy spread physically. However,
when the experiment energy is far from the resonance
peak, the effect of the energy spread is insignificant and
can be neglected[43].

As a matter of fact, Eq. (A.1) can further simplified.
Notice that J/¢ and ¢’ are narrow resonances, that is
to say, comparing with the resonance mass M, the decay
width I' could be treated as I' = 0. So the Breit-Wigner
formula transforms into a § function:

1270 Ty
(W2 — M?2)2 + 202

GW,W') =

aBW (W) =

r—0 12772Feer
(20 227 “eeDf 5
M
where By = I'y/I'. Then the integral in Eq. (A.3) gives

(W2 _M2) )

127r2l"eer I

o (W) MW?

1

z, W
(7 )$=17%—§’

for the cross section due to the tails of the .J/¢ and ¢'.
c. Cross section of "

According to Eq. (A.3), the radiatively corrected cross
section of 9" is expressed as

oy (W) = /0 dx F(z,W) onp[W?*(1 — z)]

2

dr F(z,W) opp[W?*(1 —12)],

where F'(z, W) is given in Eq. (A.2), while
].27TF66FND

O'ND(W2) = 5 (AG)
(W2 - Mirr)z + F?prr (W)Mi!!
and
27T,
7o (W) = rlelop (1) (A7)

(W2 - -2\45,//)2 + F2 " (W)Mi!! )
The energy dependent total width of 4" is composed of

two parts

Ly (W) =Tnp +Tpp(W), (A.8)

while the width listed by PDG is often defined as
fwu = qu(W = Mwu) . (Ag)

Using definition of Eq. (A.9), we further factorize the two
decay widths in Eq. (A.8) as follows:

Tnp=f Ty, (A.10)
or
I'np
f= T
,l/)/’

that is to say, f is actually the branching fraction of the
non-DD decays of ¢"". For I'pp, we have

Lpp(W) = (1= f)-Lyr - 0(W — 2mpo)-

p?bo p?bi
rp - —LPD" (W — 2mps) - —EDE
2 T pg T %) T (rppa)?
p?bo ﬁ%i ’
D

T+ (Ppo)® | 1+ (Fp=)?

(A.11)
where r is the classical interaction radium; rp, whose
value is around 1.4, is the ratio of D°D9 to DT D~ pro-
duction at ¢" peak. pis the D° or D* momentum, reads
explicitly as

Ppo =

1
ppt = S/ W2 —dmi,,

viz.

Pp° = Ppo

1
W=Myun 2
Pp+ =DPp+ D)

W=Myn

d. Cross section of the leading particle

The observed cross section at " mass after requir-
ing the momentum of the leading particle within certain
ranges, which is denoted by ¢!? also contains four parts,
i.e.

ol = ONR + 0y + 0y + (Tfﬁ' .

Except for the last term, the other three parts are ex-
actly the same as those of 0% in Eq.(6). As to Uff,’, the
radiatively corrected cross section reads

oL (W) :/0 de F(z, W) onp[W2(1 - 2)] |

where F(x, W) is given in Eq. (A.2), while onp is given
by Eq. (A.6).



e. Cross section of the DD decays

The observed cross section of the DD decays of 9",
denoted as PP, which only comes from the resonance
decays, is expressed as

2
4mD0

U@[L’)"B(W) :/0 " dz F(l‘,W) UDD[W2(1 - :L’)] )

where F(z,W) is given in Eq. (A.2), while opp(W?) is
by Eq. (A.7).
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