Current Location:home > Browse

1. chinaXiv:201912.00019 [pdf]

Water transport and water use efficiency differ among Populus euphratica Oliv. saplings exposed to saline water irrigation

ZHOU Honghua; CHEN Yaning ; ZHU Chenggang; YANG Yuhai; YE Zhaoxia
Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology

Populus euphratica Oliv. is a unique woody tree that can be utilized for vegetation restoration in arid and semi-arid areas. The effects of saline water irrigation (0.00, 2.93, 8.78 and 17.55 g/L NaCl solutions) on water transport and water use efficiency (WUE) of P. euphratica saplings were researched for improving the survival of P. euphratica saplings and vegetation restoration in arid and semi-arid areas of Xinjiang, China in 2011. Results showed that hydraulic conductivity and vulnerability to cavitation of P. euphratica saplings were more sensitive in root xylem than in twig xylem when irrigation water salinity increased. Irrigation with saline water concentration less than 8.78 g/L did not affect the growth of P. euphratica saplings, under which they maintained normal water transport in twig xylem through adjustment of anatomical structure of vessels and kept higher WUE and photosynthesis in leaves through adjustment of stomata. However, irrigation with saline water concentration up to 17.55 g/L severely inhibited the photochemical process and WUE of P. euphratica saplings, resulting in severe water-deficit in leaves and a sharp reduction in water transport in xylem. Thus, it is feasible to irrigate P. euphratica forest by using saline groundwater for improving the survival of P. euphratica saplings and vegetation restoration in arid and semi-arid areas of Xinjiang, China.

submitted time 2019-12-06 From cooperative journals:《Journal of Arid Land》 Hits3042Downloads635 Comment 0

2. chinaXiv:201903.00242 [pdf]

Hydrological and water cycle processes of inland river basins in the arid region of Northwest China

CHEN Yaning; LI Baofu; FAN Yuting
Subjects: Geosciences >> Hydrology

The increasing shortage in water resources is a key factor affecting sustainable socio-economic development in the arid region of Northwest China (ARNC). Water shortages also affect the stability of the region's oasis ecosystem. This paper summarizes the hydrological processes and water cycle of inland river basins in the ARNC, focusing on the following aspects: the spatial-temporal features of water resources (including air water vapor resources, runoff, and glacial meltwater) and their driving forces; the characteristics of streamflow composition in the inland river basins; the characteristics and main controlling factors of baseflow in the inland rivers; and anticipated future changes in hydrological processes and water resources. The results indicate that: (1) although the runoff in most inland rivers in the ARNC showed a significant increasing trend, both the glaciated area and glacial ice reserves have been reduced in the mountains; (2) snow melt and glacier melt are extremely important hydrological processes in the ARNC, especially in the Kunlun and Tianshan mountains; (3) baseflow in the inland rivers of the ARNC is the result of climate change and human activities, with the main driving factors being the reduction in forest area and the over-exploitation and utilization of groundwater in the river basins; and (4) the contradictions among water resources, ecology and economy will further increase in the future. The findings of this study might also help strengthen the ecological, economic and social sustainable development in the study region.

submitted time 2019-03-28 From cooperative journals:《Journal of Arid Land》 Hits3219Downloads1485 Comment 0

3. chinaXiv:201809.00165 [pdf]

Estimation of net primary productivity and its driving factors in the Ili River Valley, China

JIAO, Wei; CHEN, Yaning; LI, Weihong; ZHU, Chenggang; LI, Zhi
Subjects: Geosciences >> History of Geosciences

Net primary productivity (NPP), as an important variable and ecological indicator in grassland ecosystems, can reflect environmental change and the carbon budget level. The Ili River Valley is a wetland nestled in the hinterland of the Eurasian continent, which responds sensitively to the global climate change. Understanding carbon budget and their responses to climate change in the ecosystem of Ili River Valley has a significant effect on the adaptability of future climate change and sustainable development. In this study, we calculated the NPP and analyzed its spatio-temporal pattern of the Ili River Valley during the period 2000–2014 using the normalized difference vegetation index (NDVI) and an improved Carnegie-Ames-Stanford (CASA) model. Results indicate that validation showed a good performance of CASA over the study region, with an overall coefficient of determination (R2) of 0.65 and root mean square error (RMSE) of 20.86 g C/(m2?a). Temporally, annual NPP of the Ili River Valley was 599.19 g C/(m2?a) and showed a decreasing trend from 2000 to 2014, with an annual decrease rate of –3.51 g C/(m2?a). However, the spatial variation was not consistent, in which 55.69% of the areas showed a decreasing tendency, 12.60% of the areas remained relatively stable and 31.71% appeared an increasing tendency. In addition, the decreasing trends in NPP were not continuous throughout the 15-year period, which was likely being caused by a shift in climate conditions. Precipitation was found to be the dominant climatic factor that controlled the inter-annual variability in NPP. Furthermore, the correlations between NPP and climate factors differed along the vertical zonal. In the medium-high altitudes of the Ili River Valley, the NPP was positively correlated to precipitation and negatively correlated to temperature and net radiation. In the low-altitude valley and high-altitude mountain areas, the NPP showed a negative correlation with precipitation and a weakly positive correlation with temperature and net radiation. The results suggested that the vegetation of the Ili River Valley degraded in recent years, and there was a more complex mechanism of local hydrothermal redistribution that controlled the growth of vegetation in this valley ecosystem.

submitted time 2018-09-18 From cooperative journals:《Journal of Arid Land》 Hits2833Downloads857 Comment 0

  [1 Pages/ 3 Totals]