Current Location:home > Browse

1. chinaXiv:201805.00222 [pdf]

穿戴式跌倒检测中特征向量的提取和降维研究

李雷; 张帆; 施化吉; 周从华
Subjects: Computer Science >> Integration Theory of Computer Science

穿戴式跌倒检测中老年人特征属性过多会造成维数灾难,影响后续跌倒检测精度。针对此问题,首先采用时域分析法提取初始特征向量集,然后用提出的改进核主成分分析算法(IKPCA)对特征向量进行降维,从而获得优质的特征向量集,使得后续的分类具有更好的效果。IKPCA算法首先利用I-RELIEF算法对初始特征向量集进行特征选择,然后计算跌倒特征向量的信息度量和相似度度量,最后根据跌倒特征向量的相似度度量剔除无效的跌倒特征向量。IKPCA算法不但保持核主成分分析算法(KPCA)较好的降维能力,而且扩充了较好的分类能力。利用真实的数据集进行实验,对比分析表明,相比其他算法,IKPCA算法能够得到更优质的特征向量数据集。

submitted time 2018-05-20 From cooperative journals:《计算机应用研究》 Hits1034Downloads584 Comment 0

  [1 Pages/ 1 Totals]