针对传统协同过滤算法所面临的稀疏性及预测准确度不高的问题,提出一种基于受限玻尔兹曼机与加权Slope One的混合推荐算法。首先通过受限玻尔兹曼机对评分矩阵的初步填充,缓解数据的稀疏性问题;然后通过一种混合项目相似度计算方法,引入项目属性信息;最后通过加权Slope One算法的二次预测,提升推荐效果。在MovieLens100K数据集上的实验表明,两种算法的结合提高了推荐的准确度。 |
submitted time 2019-01-03 From cooperative journals:《计算机应用研究》 Hits1006, Downloads595, Comment 0
基于BiGRU-Attention神经网络的文本情感分类模型
王伟; 孙玉霞; 齐庆杰; 孟祥福
针对双向长短时记忆神经(BiLSTM)模型训练时间长、不能充分学习文本上下文信息的问题,提出一种基于BiGRU-Attention的文本情感分类模型。首先,利用双向门控循环(BiGRU)神经网络层对文本深层次的信息进行特征提取;其次,利用注意力机制(attention)层对提取的文本深层次信息分配相应的权重;最后,将不同权重的文本特征信息放入softmax函数层进行文本情感极性分类。实验结果表明,所提的神经网络模型在IMDB数据集上的准确率是90.54%,损失率是0.2430,时间代价是1100 s,验证了 BiGRU-Attention模型的有效性。 |
submitted time 2018-10-11 From cooperative journals:《计算机应用研究》 Hits2738, Downloads1759, Comment 0