由于字形的复杂多变,脱机手写汉字的识别一直是模式识别的难题,深度卷积神经网络的发展为其提供了一种直接有效的解决方案。研究基于inceptions 结构神经网络的脱机手写汉字识别,提出了一种inception结构的改进方法,它具有结构更加简单、网络深度扩展更加容易、需要的训练参数量更少。该方法在数据集CISIA-HWDB1.1 上进行了实验验证,采用随机梯度下降优化算法,模型达到了96.95%的平均准确率。实验结果表明,使用改进的inception结构在图像分类上具有更好的鲁棒性,更容易扩展到其他应用领域。 |
submitted time 2019-01-28 From cooperative journals:《计算机应用研究》 Hits1326, Downloads707, Comment 0
在海量的数据中发现用户的兴趣度是电子商务领域实现针对性信息推送的一种重要方法。根据大数据稀疏性特征,把奇异值分解方法引入协作过滤算法中进行互联网站点用户的页面兴趣度的计算和验证,提出了一种基于改进协作过滤算法的用户页面兴趣度预测算法。该算法可通过在网络日志文件中,提取显性用户评分数据存在的“虚假评分”,发现用户页面兴趣度和其影响因素。MATLAB仿真结果显示:提出的基于改进协同过滤算法的用户页面兴趣度测量方法可有效克服海量数据的稀疏性,在预测准确性、测量速度方面都有很大提高。 |
submitted time 2018-08-13 From cooperative journals:《计算机应用研究》 Hits734, Downloads410, Comment 0