All Results

Subjects: Physics >> The Physics of Elementary Particles and Fields

After the discovery of a standard model (SM)-like Higgs boson, naturalness strongly favors the next-to-minimal supersymmetric SM. In this letter, we point out that the natural next-to-minimal supersymmetric SM usually predicts the following CP-even Higgs H-i sector: (A) H-2 is the SM-like Higgs boson with mass pushed upward by a lighter H-1 with mass overwhelmingly within [m(H2)/2, m(H2)]; (B) m(H3) similar or equal to 2 mu/sin 2 beta greater than or similar to 300 GeV; (C) H-3 has a significant coupling to the top quark and can decay to H1H2 with a large branching ratio. Using a jet substructure we show that these three Higgs bosons can be discovered via gg -> H-3 -> H1H2 -> b (b) over barl nu jj at the 14 TeV LHC. In particular, the LEP-LHC scenario with H-1 similar or equal to 98 GeV has a very good discovery potential. |

Towards the fate of natural composite Higgs model through single t ' search at the 8 TeV LHC

Li, Jinmian; Liu, Da; Shu, JingSubjects: Physics >> The Physics of Elementary Particles and Fields

We analyze the observational potential of single t' production in both the t' -> bW and t' -> th decay channels at 8 TeV LHC using an integrated luminosity of 25 fb(-1). Our analysis is based on a simplified model with minimal coset SO(5)/SO(4) in which the t' is a singlet of the unbroken SO(4). The single t' production, as a consequence of electroweak symmetry breaking, is less kinematically suppressed, associated with a light forward jet and has boosted decay products at the 8 TeV LHC. Therefore it provides the most promising channel in searching for a heavy t'. We have exploited the above kinematical features and used the jet substructure method to reconstruct the boosted Higgs in th decay channel. It is shown that a strong constraint on the t'bW coupling (g(t'bW)/g(tbW,SM) < 0.2 similar to 0.3) at the 95% C. L. can be obtained for m(t') subset of (700, 1000) GeV. |

Hidden confining world on the 750 GeV diphoton excess

Bian, Ligong; Chen, Ning; Liu, Da; Shu, JingSubjects: Physics >> The Physics of Elementary Particles and Fields

We explain the recent diphoton excesses around 750 GeV by both ATLAS and CMS as a singlet scalar Phi which couples to SM gluon and neutral gauge bosons only through higher-dimensional operators. A natural explanation is that Phi is a pseudo-Nambu-Goldstone boson (pNGB) which receives parity violation through anomaly if there exists a hidden strong dynamics. The singlet and other light pNGBs will decay into two SM gauge bosons and even serves as the metastable colored states which can be probed in the future. By accurately measuring their relative decay and the total production rate in the future, we will learn the underlying strong dynamics parameter. The lightest baryon in this confining theory could serve as a viable dark matter candidate. |

[1 Pages/ 3 Totals]