• Tree ring based drought variability in Northwest Tajikistan since 1895 AD

    分类: 地球科学 >> 地球科学史 提交时间: 2020-10-20 合作期刊: 《干旱区科学》

    摘要: Determining the mechanisms controlling the changes of wet and dry conditions will improve our understanding of climate change over the past hundred years, which is of great significance to the study of climate and environmental changes in the arid regions of Central Asia. Forest trees are ecologically significant in the local environment, and therefore the tree ring analysis can provide a clear record of regional historical climate. This study analyzed the correlation between the tree ring width chronology of Juniperus turkestanica Komarov and the standardized precipitation evapotranspiration index (SPEI) in Northwest Tajikistan, based on 56 tree ring samples collected from Shahristan in the Pamir region. Climate data including precipitation, temperature and the SPEI were downloaded from the Climate Research Unit (CRU) TS 4.00. The COFECHA program was used for cross-dating, and the ARSTAN program was used to remove the growth trend of the tree itself and the influence of non-climatic factors on the growth of the trees. A significant correlation was found between the radial growth of J. turkestanica trees and the monthly mean SPEI of February–April. The monthly mean SPEI sequence of February–April during the period of 1895–2016 was reconstructed, and the reconstruction equation explained 42.5% of the variance. During the past 122 a (1895–2016), the study area has experienced three wetter periods (precipitation above average): 1901–1919, 1945–1983 and 1995–2010, and four drier periods (precipitation below average): 1895–1900, 1920–1944, 1984–1994 and 2011–2016. The spatial correlation analysis revealed that the monthly mean SPEI reconstruction sequence of February–April could be used to characterize the large-scale dry-wet variations in Northwest Tajikistan during the period of 1895–2016. This study could provide comparative data for validating the projections of climate models and scientific basis for managing water resources in Tajikistan in the context of climate change.

  • Clones or no clones: genetic structure of riparian Populus euphratica forests in Central Asia

    分类: 地球科学 >> 地球科学史 提交时间: 2018-09-18 合作期刊: 《干旱区科学》

    摘要: Many riparian (Tugai) forests growing along rivers in arid and hyper-arid regions of Central Asia are dominated by the Euphrates poplar (Populus euphratica). Besides generative reproduction, which is only possible upon flooding events and at a distance to the groundwater of less than 2 m, this phreatophytic tree species also reproduces vegetatively by forming clones that can cover land surface areas of several hectares. Along a gradient of groundwater distances, we investigated whether the fraction of clones in P. euphratica stands (1) increases with increasing distance to the water table; (2) is higher if supplied with water via river cut-offs; and (3) approaches 100% at a short distance to the groundwater, but at high salt concentrations in the upper soil layers, which would prevent germination and establishment of seedlings. AFLP (Amplified Fragment Length Polymorphism) analyses were conducted on leaf samples taken from mature P. euphratica trees growing at the fringes of the Taklimakan Desert in stands with different distances (2–12 m) to the groundwater at two plots at the middle and the lower reaches of the Tarim River and in a stand close to Ebinur Lake, Xinjiang, China. Genetic diversity was large among plots, but considerably smaller within plots. We found the highest genetic diversity (caused by regeneration from seeds) at plots that have a short distance to the groundwater or are supplied with additional water. There was no significant relationship between groundwater distance and clonal fraction. All investigated trees at the saline Ebinur Lake site belonged to one single clone. Our results demonstrate that the genetic pattern of this widespread species is not easily predictable even over small distances as it is a result of a complex interplay of stand history and dispersal of propagules (pollen, seeds, and vegetative diaspores) by wind and water. In conservation and restoration schemes, P. euphratica stands with a high genetic diversity and stands that grow at short distances to the water table and are regularly subjected to flooding (which favors generative over clonal reproduction) should be prioritized.