Current Location:home > Browse
Your conditions: 哈尔滨工业大学(4)

1. chinaXiv:202008.00091 [pdf]

Better Than Reference In Low Light Image Enhancement Conditional Re-Enhancement Networks.pdf

张雨; 遆晓光; 张斌; 季锐航; 王春晖
Subjects: Computer Science >> Computer Application Technology

Low light images suffer from severe noise, low brightness, low contrast, etc. In previous researches, many image enhancement methods have been proposed, but few methods can deal with these problems simultaneously. In this paper, to solve these problems simultaneously, we propose a low light image enhancement method that can combined with supervised learning and previous HSV (Hue, Saturation, Value) or Retinex model based image enhancement methods. First, we analyse the relationship between the HSV color space and the Retinex theory, and show that the V channel (V channel in HSV color space, equals the maximum channel in RGB color space) of the enhanced image can well represent the contrast and brightness enhancement process. Then, a data-driven conditional re-enhancement network (denoted as CRENet) is proposed. The network takes low light images as input and the enhanced V channel as condition, then it can re-enhance the contrast and brightness of the low light image and at the same time reduce noise and color distortion. It should be noted that during the training process, any paired images with different exposure time can be used for training, and there is no need to carefully select the supervised images which will save a lot. In addition, it takes less than 20 ms to process a color image with the resolution 400*600 on a 2080Ti GPU. Finally, some comparative experiments are implemented to prove the effectiveness of the method. The results show that the method proposed in this paper can significantly improve the quality of the enhanced image, and by combining with other image contrast enhancement methods, the final enhancement result can even be better than the reference image in contrast and brightness. (Code will be available at

submitted time 2020-08-26 Hits5756Downloads561 Comment 0

2. chinaXiv:202006.00174 [pdf]


岳金星; 卜玉伟; 李佳音
Subjects: Psychology >> Physiological Psychology

本文梳理了国际期刊发表的使用事件相关电位(ERP)技术研究人脑开展预测性句子加工所取得的主要成果和重要突破。本文从心理语言学对句子预测的研究逻辑为切入点,接着分别回顾通过N400和前侧正波(frontal positivity)两个ERP效应揭示词形预测和语义预测这两个预测性句子加工主要操作的研究里程碑,并进而总结勾勒出预测性句子加工理论模型。最后,本文指出了现有研究的局限性和未来该课题潜在的方向。

submitted time 2020-06-19 Hits11656Downloads1067 Comment 0

3. chinaXiv:202004.00026 [pdf]

Learning an Adaptive Model for Extreme Low-light Raw Image Processing

付清旭; 遆晓光; 张雨1
Subjects: Computer Science >> Computer Application Technology

Low-light images suffer from severe noise and low illumination. Current deep learning models that are trained with real-world images have excellent noise reduction, but a ratio parameter must be chosen manually to complete the enhancement pipeline. In this work, we propose an adaptive low-light raw image enhancement network to avoid parameter-handcrafting and to improve image quality. The proposed method can be divided into two sub-models: Brightness Prediction (BP) and Exposure Shifting (ES). The former is designed to control the brightness of the resulting image by estimating a guideline exposure time t 1 . The latter learns to approximate an exposure-shifting operator ES, converting a low-light image with real exposure time t 0 to a noise-free image with guideline exposure time t 1 . Additionally, structural similarity (SSIM) loss and Image Enhancement Vector (IEV) are introduced to promote image quality, and a new Campus Image Dataset (CID) is proposed to overcome the limitations of the existing datasets and to supervise the training of the proposed model. In quantitative tests, it is shown that the proposed method has the lowest Noise Level Estimation (NLE) score compared with BM3D-based low-light algorithms, suggesting a superior denoising performance. Furthermore, those tests illustrate that the proposed method is able to adaptively control the global image brightness according to the content of the image scene. Lastly, the potential application in video processing is briefly discussed.

submitted time 2020-04-14 Hits13111Downloads988 Comment 0

4. chinaXiv:202003.00048 [pdf]


张雨; 遆晓光; 张斌; 王春晖
Subjects: Computer Science >> Other Disciplines of Computer Science


submitted time 2020-03-06 Hits17586Downloads1082 Comment 1

  [1 Pages/ 4 Totals]