Current Location:home > Browse

1. chinaXiv:202101.00073 [pdf]

Transformation of vegetative cover on the Ustyurt Plateau of Central Asia as a consequence of the Aral Sea shrinkage

Adilov BEKZOD; Shomurodov HABIBULLO; FAN Lianlian; LI Kaihui; MA Xuexi; LI Yaoming
Subjects: Geosciences >> Geography

The gradual shrinkage of the Aral Sea has led to not only the degradation of the unique environments of the Aral Sea, but also numerous and fast developing succession processes in the neighborhood habitats surrounding the sea. In this study, we investigated the vegetative succession processes related to the Aral Sea shrinkage in the Eastern Cliff of the Ustyurt Plateau in Republic of Uzbekistan, Central Asia. We compared the results of our current investigation (2010–2017) on vegetative communities with the geobotany data collected during the 1970s (1970–1980). The results showed great changes in the mesophytic plant communities and habitat aridization as a result of the drop in the underground water level, which decreased atmospheric humidity and increased the salt content of the soil caused by the shrinkage of the Aral Sea. In the vegetative communities, we observed a decrease in the Margalef index (DMg), which had a positive correlation with the poly-dominance index (I-D). The main indications of the plant communities' transformation were the loss of the weak species, the appearance of new communities with low species diversity, the stabilization of the projective cover of former resistant communities, as well as the appearance of a new competitive species, which occupy new habitats.

submitted time 2021-01-22 From cooperative journals:《Journal of Arid Land》 Hits338Downloads163 Comment 0

2. chinaXiv:202004.00044 [pdf]

Challenges for the sustainable use of water and land resources under a changing climate and increasing salinization in the Jizzakh irrigation zone of Uzbekistan

Rashid KULMATOV; Jasur MIRZAEV; Jilili ABUDUWAILI; Bakhtiyor KARIMOV
Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology

Jizzakh Province in Uzbekistan is one of the largest irrigated areas in Central Asia without natural drainage. In combination with aridity, climate change and extensive irrigation practices, this has led to the widespread salinization of agricultural land. The aim of this study was to identify opportunities to improve the reclamation status of the irrigated area and how best to effectively use the water resources in Jizzakh Province based on investigations conducted between 1995 and 2016. A database of field measurements of groundwater levels, mineralization and soil salinity conducted by the provincial Hydro-Geological Reclamation Expeditions was used in the study. The total groundwater mineralization was determined using a portable electric conductometer (Progress 1T) and the chloride concentration was determined using the Mohr method. The soil salinity analyses were conducted by applying two different methods: (1) the extraction and assessment of the soluble salt content, and (2) using an SM-138 conductivity sensor applied to a 1:1 mixture of soil sample and water. The analyses of the monitoring results and the salt balance in the "irrigation water–soil–drainage water" system clearly demonstrated that the condition of the irrigated land in the province was not significantly improved. Under these conditions, the stability of crop yields is achieved mainly through the use of large volumes of fertilizer. However, excess amounts of mineral fertilizers can also cause the salinization of soils. The average groundwater salinization value in most of the irrigated land (75.3%) fluctuated between 1.1 and 5.0 g/L, while the values were less than 1.0 g/L in 13.1% of the land and in the range of 5.1–10.0 g/L in 10.5% of the land. During the period of 1995–2016 the salinization level of the irrigated land in Jizzakh Province increased slightly and the area could be divided into the following classes: no salinity (17.7% of the total area), low salinity (51.3%), moderate salinity (29.0%), and high salinity (2.0%). Detailed studies of the salt balance in irrigated land, the impact of climate change, increased fertilizer use, and repeated remediation leaching on the groundwater level and mineralization should be conducted in the future, due to the possibility of accelerated salinization, fertility decline, and reduced yields of agricultural crops.

submitted time 2020-04-23 From cooperative journals:《Journal of Arid Land》 Hits978Downloads541 Comment 0

  [1 Pages/ 2 Totals]