按提交时间
按主题分类
按作者
按机构
  • Aberrantly upregulated TRAP1 is required for tumorigenesis of breast cancer

    分类: 生物学 >> 生物物理学 >> 肿瘤学 提交时间: 2016-05-15

    摘要: Tumor necrosis factor receptor-associated protein 1 (TRAP1) is abnormally expressed in many cancers. In this study, we showed that TRAP1 is aberrantly upregulated in breast tumors compared to control tissues. TRAP1 knockdown downregulates mitochondrial aerobic respiratory, sensitizes cells to lethal stimuli, and inhibited tumor growth in MDA-MB-231 and MCF-7 breast cancer cells in vivo. TRAP1 overexpression, however, enhances the capacity to cope with stress conditions. These evidences suggested that TRAP1 is required for tumorigenesis. We also found that TRAP1 regulates the mitochondrial morphology. Relatively lower TRAP1 levels are associated with the rod-shaped mitochondrial phenotype in invasive and metastatic MDA-MB-231 breast cancer cells; on the contrary, higher TRAP1 levels are associated with the tubular network-shaped mitochondrial phenotype in non-invasive MCF-7 cells. Interestingly, the expression of TRAP1 in human breast cancer specimens inversely correlates with tumor grade. Overexpression of TRAP1 in MDA-MB-231 cells causes mitochondrial fusion, triggers mitochondria to form tubular networks, and suppresses cell migration and invasion in vitro and in vivo. These data link TRAP1-regulated mitochondrial dynamics and function with tumorigenesis of breast cancer and suggested that TRAP1 may therefore be a potential target for breast cancer drug development.

  • Tristetraprolin Recruits Eukaryotic Initiation Factor 4E2 To Repress Translation of AU-Rich Element-Containing mRNAs

    分类: 生物学 >> 生物物理学 >> 生物物理、生物化学与分子生物学 提交时间: 2016-05-12

    摘要: Tristetraprolin (TTP) regulates the expression of AU-rich element-containing mRNAs through promoting the degradation and repressing the translation of target mRNA. While the mechanism for promoting target mRNA degradation has been extensively studied, the mechanism underlying translational repression is not well established. Here, we show that TTP recruits eukaryotic initiation factor 4E2 (eIF4E2) to repress target mRNA translation. TTP interacted with eIF4E2 but not with eIF4E. Overexpression of eIF4E2 enhanced TTP-mediated translational repression, and downregulation of endogenous eIF4E2 or overexpression of a truncation mutant of eIF4E2 impaired TTP-mediated translational repression. Overexpression of an eIF4E2 mutant that lost the cap-binding activity also impaired TTP's activity, suggesting that the cap-binding activity of eIF4E2 is important in TTP-mediated translational repression. We further show that TTP promoted eIF4E2 binding to target mRNA. These results imply that TTP recruits eIF4E2 to compete with eIF4E to repress the translation of target mRNA. This notion is supported by the finding that downregulation of endogenous eIF4E2 increased the production of tumor necrosis factor alpha (TNF-alpha) protein without affecting the mRNA levels in THP-1 cells. Collectively, these results uncover a novel mechanism by which TTP represses target mRNA translation.

  • Crystal structures of the PsbS protein essential for photoprotection in plants

    分类: 生物学 >> 生物物理学 >> 生物物理、生物化学与分子生物学 提交时间: 2016-05-12

    摘要: The photosystem II protein PsbS has an essential role in qE-type nonphotochemical quenching, which protects plants from photodamage under excess light conditions. qE is initiated by activation of PsbS by low pH, but the mechanism of PsbS action remains elusive. Here we report the low-pH crystal structures of PsbS from spinach in its free form and in complex with the qE inhibitor N, N'-dicyclohexylcarbodiimide (DCCD), revealing that PsbS adopts a unique folding pattern, and, unlike other members of the light-harvesting-complex superfamily, it is a noncanonical pigment-binding protein. Structural and biochemical evidence shows that both active and inactive PsbS form homodimers in the thylakoid membranes, and DCCD binding disrupts the lumenal intermolecular hydrogen bonds of the active PsbS dimer. Activation of PsbS by low pH during qE may involve a conformational change associated with altered lumenal intermolecular interactions of the PsbS dimer.

  • Quantitative proteomics using SILAC: Principles, applications, and developments

    分类: 生物学 >> 生物物理学 提交时间: 2016-05-12

    摘要: SILAC is based on direct addition of selected stable isotope amino acids into the cell culture medium, allowing superior quantitative analysis of the cellular proteome compared to other labeling methods. The great advantages of SILAC lie in its straight-forward implementation, quantitative accuracy, and reproducibility over chemical labeling or label-free quantification strategies, favoring its adoption for proteomic research. SILAC has been widely applied to characterize the proteomic changes between different biological samples, to investigate dynamic changes of protein PTMs, to distinguish specific interacting proteins in interaction proteomic analysis, and to analyze protein turnover in the proteome-wide scale. The present review summarizes the principles of SILAC technology, its applications in biological research, and the present state of this technology.

  • Murine Gammaherpesvirus 68 ORF48 Is an RTA-Responsive Gene Product and Functions in both Viral Lytic Replication and Latency during In Vivo Infection

    分类: 生物学 >> 生物物理学 提交时间: 2016-05-12

    摘要: Replication and transcription activator (RTA) of gammaherpesvirus is an immediate early gene product and regulates the expression of many downstream viral lytic genes. ORF48 is also conserved among gammaherpesviruses; however, its expression regulation and function remained largely unknown. In this study, we characterized the transcription unit of ORF48 from murine gammaherpesvirus 68 (MHV-68) and analyzed its transcriptional regulation. We showed that RTA activates the ORF48 promoter via an RTA-responsive element (48pRRE). RTA binds to 48pRRE directly in vitro and also associates with ORF48 promoter in vivo. Mutagenesis of 48pRRE in the context of the viral genome demonstrated that the expression of ORF48 is activated by RTA through 48pRRE during de novo infection. Through site-specific mutagenesis, we generated an ORF48-null virus and examined the function of ORF48 in vitro and in vivo. The ORF48-null mutation remarkably reduced the viral replication efficiency in cell culture. Moreover, through intranasal or intraperitoneal infection of laboratory mice, we showed that ORF48 is important for viral lytic replication in the lung and establishment of latency in the spleen, as well as viral reactivation from latency. Collectively, our study identified ORF48 as an RTA-responsive gene and showed that ORF48 is important for MHV-68 replication both in vitro and in vivo. IMPORTANCE The replication and transcription activator (RTA), conserved among gammaherpesviruses, serves as a molecular switch for the virus life cycle. It works as a transcriptional regulator to activate the expression of many viral lytic genes. However, only a limited number of such downstream genes have been uncovered for MHV-68. In this study, we identified ORF48 as an RTA-responsive gene of MHV-68 and mapped the cis element involved. By constructing a mutant virus that is deficient in ORF48 expression and through infection of laboratory mice, we showed that ORF48 plays important roles in different stages of viral infection in vivo. Our study provides insights into the transcriptional regulation and protein function of MHV-68, a desired model for studying gammaherpesviruses.

  • A Novel Transgenic Mouse Line for Tracing MicroRNA-155-5p Activity In Vivo

    分类: 生物学 >> 生物物理学 提交时间: 2016-05-11

    摘要: MicroRNA-155 (miR-155) plays significant role in various physiological processes involving both innate and adaptive immunity. miR-155 expression level changes dynamically during various immune responses. However, current approaches for miR-155 detection at the RNA level do not precisely reflect the real-time activity. Herein, we generated a transgenic mouse line (R26-DTR-155T) for determination of miR-155-5p activity in vivo by inserting miR-155-5p target sequence downstream of a reporter transgene comprising Diphtheria Toxin Receptor and TagBlue fluorescence protein. Using this approach, R26-DTR-155T mice were able to measure variation in levels of miR-155-5p activity in specific cell types of interest. The DTR expression levels were inversely correlated with the endogenous miR-155 expression pattern as detected by quantitative RT-PCR. Our data demonstrate a novel transgenic mouse line which could be useful for tracing miR-155-5p activity in specific cell types through measurement of miR-155-5p activity at single cell level.

  • Increased Sensitivity of DNA Damage Response-Deficient Cells to Stimulated Microgravity-Induced DNA Lesions

    分类: 生物学 >> 生物物理学 提交时间: 2016-05-11

    摘要: Microgravity is a major stress factor that astronauts have to face in space. In the past, the effects of microgravity on genomic DNA damage were studied, and it seems that the effect on genomic DNA depends on cell types and the length of exposure time to microgravity or simulated microgravity (SMG). In this study we used mouse embryonic stem (MES) and mouse embryonic fibroblast (MEF) cells to assess the effects of SMG on DNA lesions. To acquire the insight into potential mechanisms by which cells resist and/or adapt to SMG, we also included Rad9-deleted MES and Mdc1-deleted MEF cells in addition to wild type cells in this study. We observed significant SMG-induced DNA double strand breaks (DSBs) in Rad9(-/-) MES and Mdc1(-/-) MEF cells but not in their corresponding wild type cells. A similar pattern of DNA single strand break or modifications was also observed in Rad9(-/-) MES. As the exposure to SMG was prolonged, Rad9(-/-) MES cells adapted to the SMG disturbance by reducing the induced DNA lesions. The induced DNA lesions in Rad9(-/-) MES were due to SMG-induced reactive oxygen species (ROS). Interestingly, Mdc1(-/-) MEF cells were only partially adapted to the SMG disturbance. That is, the induced DNA lesions were reduced over time, but did not return to the control level while ROS returned to a control level. In addition, ROS was only partially responsible for the induced DNA lesions in Mdc1(-/-) MEF cells. Taken together, these data suggest that SMG is a weak genomic DNA stress and can aggravate genomic instability in cells with DNA damage response (DDR) defects.

  • A Portion of Inhibitory Neurons in Human Temporal Lobe Epilepsy are Functionally Upregulated: An Endogenous Mechanism for Seizure Termination

    分类: 生物学 >> 生物物理学 >> 神经科学 提交时间: 2016-05-11

    摘要: Main ProblemEpilepsy is one of the more common neurological disorders. The medication is often ineffective to the patients suffering from intractable temporal lobe epilepsy (TLE). As their seizures are usually self-terminated, the elucidation of the mechanism underlying endogenous seizure termination will help to find a new strategy for epilepsy treatment. We aim to examine the role of inhibitory interneurons in endogenous seizure termination in TLE patients. MethodsWhole-cell recordings were conducted on inhibitory interneurons in seizure-onset cortices of intractable TLE patients and the temporal lobe cortices of nonseizure individuals. The intrinsic property of the inhibitory interneurons and the strength of their GABAergic synaptic outputs were measured. The quantitative data were introduced into the computer-simulated neuronal networks to figure out a role of these inhibitory units in the seizure termination. ResultsIn addition to functional downregulation, a portion of inhibitory interneurons in seizure-onset cortices were upregulated in encoding the spikes and controlling their postsynaptic neurons. A patch-like upregulation of inhibitory neurons in the local network facilitated seizure termination. The upregulations of both inhibitory neurons and their output synapses synergistically shortened seizure duration, attenuated seizure strength, and terminated seizure propagation. ConclusionAutomatic seizure termination is likely due to the fact that a portion of the inhibitory neurons and synapses are upregulated in the seizure-onset cortices. This mechanism may create novel therapeutic strategies to treat intractable epilepsy, such as the simultaneous upregulation of cortical inhibitory neurons and their output synapses.

  • CD47 blockade triggers T cell-mediated destruction of immunogenic tumors

    分类: 生物学 >> 生物物理学 >> 生物物理、生物化学与分子生物学 提交时间: 2016-05-11

    摘要: Macrophage phagocytosis of tumor cells mediated by CD47-specific blocking antibodies has been proposed to be the major effector mechanism in xenograft models. Here, using syngeneic immunocompetent mouse tumor models, we reveal that the therapeutic effects of CD47 blockade depend on dendritic cell but not macrophage cross-priming of T cell responses. The therapeutic effects of anti-CD47 antibody therapy were abrogated in T cell-deficient mice. In addition, the antitumor effects of CD47 blockade required expression of the cytosolic DNA sensor STING, but neither MyD88 nor TRIF, in CD11c(+) cells, suggesting that cytosolic sensing of DNA from tumor cells is enhanced by anti-CD47 treatment, further bridging the innate and adaptive responses. Notably, the timing of administration of standard chemotherapy markedly impacted the induction of antitumor T cell responses by CD47 blockade. Together, our findings indicate that CD47 blockade drives T cell-mediated elimination of immunogenic tumors.

  • ZIC2-dependent OCT4 activation drives self-renewal of human liver cancer stem cells

    分类: 生物学 >> 生物物理学 提交时间: 2016-05-11

    摘要: Liver cancer stem cells (CSCs) have been identified and shown to have self-renewal and differentiation properties; however, the biology of these hepatic CSCs remains largely unknown. Here, we analyzed transcriptome gene expression profiles of liver CSCs and non-CSCs from hepatocellular carcinoma (HCC) cells lines and found that the transcription factor (TF) ZIC2 is highly expressed in liver CSCs. ZIC2 was required for the self-renewal maintenance of liver CSCs, as ZIC2 depletion reduced sphere formation and xenograft tumor growth in mice. We determined that ZIC2 acts upstream of the TF OCT4 and that ZIC2 recruits the nuclear remodeling factor (NURF) complex to the OCT4 promoter, thereby initiating OCT4 activation. In HCC patients, expression levels of the NURF complex were consistent with clinical severity and prognosis. Moreover, ZIC2 and OCT4 levels positively correlated to the clinicopathological stages of HCC patients. Altogether, our results indicate that levels of ZIC2, OCT4, and the NURF complex can be detected and used for diagnosis and prognosis prediction of HCC patients. Moreover, these factors may be potential therapeutic targets for eradicating liver CSCs.

  • Gavage of D-Ribose induces A beta-like deposits, Tau hyperphosphorylation as well as memory loss and anxiety-like behavior in mice

    分类: 生物学 >> 生物物理学 >> 肿瘤学 提交时间: 2016-05-11

    摘要: In addition to D-Glucose, D-Ribose is also abnormally elevated in the urine of type 2 diabetic patients, establishing a positive correlation between the concentration of uric D-Ribose and the severity of diabetes. Intraperitoneal injection of D-Ribose causes memory loss and brain inflammation in mice. To simulate a chronic progression of age-related cognitive impairment, we orally administered D-Ribose by gavage at both a low and high dose to 8 week-old male C57BL/6J mice daily for a total of 6 months, followed by behavioral, histological and biochemical analysis. We found that long-term oral administration of D-Ribose impairs spatial learning and memory, accompanied by anxiety-like behavior. Tau was hyperphosphorylated at AT8, S396, S214 and T181 in the brain. A beta-like deposition was also found in the hippocampus for the high dose group. D-Glucose-gavaged mice did not show significant memory loss and anxiety-like behavior under the same experimental conditions. These results demonstrate that a long-term oral administration of D-Ribose not only induces memory loss with anxiety-like behavior, but also elevates A beta-like deposition and Tau hyperphosphorylation, presenting D-Ribose-gavaged mouse as a model for agerelated cognitive impairment and diabetic encephalopathy.

  • A Novel Assay Reveals Hygrotactic Behavior in Drosophila

    分类: 生物学 >> 生物物理学 提交时间: 2016-05-11

    摘要: Humidity is one of the most important factors that determines the geographical distribution and survival of terrestrial animals. The ability to detect variation in humidity is conserved across many species. Here, we established a novel behavioral assay that revealed the thirsty Drosophila exhibits strong hygrotactic behavior, and it can locate water by detecting humidity gradient. In addition, exposure to high levels of moisture was sufficient to elicit proboscis extension reflex behavior in thirsty flies. Furthermore, we found that the third antennal segment was necessary for hygrotactic behavior in thirsty flies, while arista was required for the avoidance of moist air in hydrated flies. These results indicated that two types of hygroreceptor cells exist in Drosophila: one located in the third antennal segment that mediates hygrotactic behavior in thirst status, and the other located in arista which is responsible for the aversive behavior toward moist air in hydration status. Using a neural silencing screen, we demonstrated that synaptic output from the mushroom body alpha/beta surface and posterior neurons was required for both hygrotactic behavior and moisture-aversive behavior.

  • Age-related formaldehyde interferes with DNA methyltransferase function, causing memory loss in Alzheimer's disease

    分类: 生物学 >> 生物物理学 提交时间: 2016-05-11

    摘要: Hippocampus-related topographic amnesia is the most common symptom of memory disorders in Alzheimer's disease (AD) patients. Recent studies have revealed that experience-mediated DNA methylation, which is regulated by enzymes with DNA methyltransferase (DNMT) activity, is required for the formation of recent memory as well as the maintenance of remote memory. Notably, overexpression of DNMT3a in the hippocampus can reverse spatial memory deficits in aged mice. However, a decline in global DNA methylation was found in the autopsied hippocampi of patients with AD. Exactly, what endogenous factors that affect DNA methylation still remain to be elucidated. Here, we report a marked increase in endogenous formaldehyde levels is associated with a decline in global DNA methylation in the autopsied hippocampus from AD patients. In vitro and in vivo results show that formaldehyde in excess of normal physiological levels reduced global DNA methylation by interfering DNMTs. Interestingly, intrahippocampal injection of excess formaldehyde before spatial learning in healthy adult rats can mimic the learning difficulty of early stage of AD. Moreover, injection of excess formaldehyde after spatial learning can mimic the loss of remote spatial memory observed in late stage of AD. These findings suggest that aging-associated formaldehyde contributes to topographic amnesia in AD patients. (C) 2015 Elsevier Inc. All rights reserved.

  • Gammaherpesvirus Tegument Protein ORF33 Is Associated with Intranuclear Capsids at an Early Stage of the Tegumentation Process

    分类: 生物学 >> 生物物理学 提交时间: 2016-05-11

    摘要: Herpesvirus nascent capsids, after assembly in the nucleus, must acquire a variety of tegument proteins during maturation. However, little is known about the identity of the tegument proteins that are associated with capsids in the nucleus or the molecular mechanisms involved in the nuclear egress of capsids into the cytoplasm, especially for the two human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), due to a lack of efficient lytic replication systems. Murine gammaherpesvirus 68 (MHV-68) is genetically related to human gammaherpesviruses and serves as an excellent model to study the de novo lytic replication of gammaherpesviruses. We have previously shown that open reading frame 33 (ORF33) of MHV-68 is a tegument protein of mature virions and is essential for virion assembly and egress. However, it remains unclear how ORF33 is incorporated into virions. In this study, we first show that the endogenous ORF33 protein colocalizes with capsid proteins at discrete areas in the nucleus during viral infection. Cosedimentation analysis as well as an immunoprecipitation assay demonstrated that ORF33 is associated with both nuclear and cytoplasmic capsids. An immunogold labeling experiment using an anti-ORF33 monoclonal antibody revealed that ORF33-rich areas in the nucleus are surrounded by immature capsids. Moreover, ORF33 is associated with nucleocapsids prior to primary envelopment as well as with mature virions in the cytoplasm. Finally, we show that ORF33 interacts with two capsid proteins, suggesting that nucleocapsids may interact with ORF33 in a direct manner. In summary, we identified ORF33 to be a tegument protein that is associated with intranuclear capsids prior to primary envelopment, likely through interacting with capsid proteins in a direct manner. IMPORTANCE Morphogenesis is an essential step in virus propagation that leads to the generation of progeny virions. For herpesviruses, this is a complicated process that starts in the nucleus. Although the process of capsid assembly and genome packaging is relatively well understood, how capsids acquire tegument (the layer between the capsid and the envelope in a herpesvirus virion) and whether the initial tegumentation process takes place in the nucleus remain unclear. We previously showed that ORF33 of MHV-68 is a tegument protein and functions in both the nuclear egress of capsids and final virion maturation in the cytoplasm. In the present study, we show that ORF33 is associated with intranuclear capsids prior to primary envelopment and identify novel interactions between ORF33 and two capsid proteins. Our work provides new insights into the association between tegument proteins and nucleocapsids at an early stage of the virion maturation process for herpesviruses.

  • FUS Interacts with HSP60 to Promote Mitochondrial Damage

    分类: 生物学 >> 生物物理学 >> 基因表达调控与表观遗传学 提交时间: 2016-05-11

    摘要: FUS-proteinopathies, a group of heterogeneous disorders including ALS-FUS and FTLD-FUS, are characterized by the formation of inclusion bodies containing the nuclear protein FUS in the affected patients. However, the underlying molecular and cellular defects remain unclear. Here we provide evidence for mitochondrial localization of FUS and its induction of mitochondrial damage. Remarkably, FTLD-FUS brain samples show increased FUS expression and mitochondrial defects. Biochemical and genetic data demonstrate that FUS interacts with a mitochondrial chaperonin, HSP60, and that FUS translocation to mitochondria is, at least in part, mediated by HSP60. Down-regulating HSP60 reduces mitochondrially localized FUS and partially rescues mitochondrial defects and neurodegenerative phenotypes caused by FUS expression in transgenic flies. This is the first report of direct mitochondrial targeting by a nuclear protein associated with neurodegeneration, suggesting that mitochondrial impairment may represent a critical event in different forms of FUS-proteinopathies and a common pathological feature for both ALS-FUS and FTLD-FUS. Our study offers a potential explanation for the highly heterogeneous nature and complex genetic presentation of different forms of FUS-proteinopathies. Our data also suggest that mitochondrial damage may be a target in future development of diagnostic and therapeutic tools for FUS-proteinopathies, a group of devastating neurodegenerative diseases.

  • Crystal structure of FadD32, an enzyme essential for mycolic acid biosynthesis in mycobacteria

    分类: 生物学 >> 生物物理学 提交时间: 2016-05-11

    摘要: Fatty acid degradation protein D32 (FadD32), an enzyme required for mycolic acid biosynthesis and essential for mycobacterial growth, has recently been identified as a valid and promising target for anti-tuberculosis drug development. Here we report the crystal structures of Mycobacterium smegmatis FadD32 in the apo and ATP-bound states at 2.4 angstrom and 2.25 angstrom resolution, respectively. FadD32 consists of two globular domains connected by a flexible linker. ATP binds in a cleft at the interface between the N- and C-terminal domains and its binding induces significant local conformational changes in FadD32. The binding sites of meromycolic acid and phosphopantetheine are identified by structural comparison with other members of the adenylating enzyme superfamily. These results will improve our understanding of the catalytic mechanism of FadD32 and help in the design of inhibitors of this essential enzyme.

  • Transcriptome profiling of esophageal squamous cell carcinoma reveals a long noncoding RNA acting as a tumor suppressor

    分类: 生物学 >> 生物物理学 >> 肿瘤学 提交时间: 2016-05-11

    摘要: Esophageal Squamous Cell Carcinoma (ESCC) is among the most common malignant cancers worldwide. In the past, extensive efforts have been made to characterize the involvement of protein-coding genes in ESCC tumorigenesis but few for long noncoding RNAs (lncRNAs). To investigate the transcriptome profile and functional relevance of lncRNAs, we performed an integrative analysis of a customized combined lncRNA-mRNA microarray and RNA-seq data on ESCCs and matched normal tissues. We identified numerous lncRNAs that were differentially expressed between the normal and tumor tissues, termed "ESCC-associated lncRNAs (ESCALs)", of which, the majority displayed restricted expression pattern. Also, a subset of ESCALs appeared to be associated with ESCC patient survival. Gene set enrichment analysis (GSEA) further suggested that over half of the ESCALs were positively- or nelgativelyassociated with metastasis. Among these, we identified a novel nuclear-retained lncRNA, named Epist, which is generally highly expressed in esophagus, and which is down-regulated during ESCC progression. Epist over-expression and knockdown studies further suggest that Epist inhibits the metastasis, acting as a tumor suppressor in ESCC. Collectively, our analysis of the ESCC transcriptome identified the potential tumor suppressing lncRNA Epist, and provided a foundation for future efforts to identify functional lncRNAs for cancerous therapeutic targeting.

  • Myo9b is a key player in SLIT/ROBO-mediated lung tumor suppression

    分类: 生物学 >> 生物物理学 提交时间: 2016-05-11

    摘要: Emerging evidence indicates that the neuronal guidance molecule SLIT plays a role in tumor suppression, as SLIT-encoding genes are inactivated in several types of cancer, including lung cancer; however, it is not clear how SLIT functions in lung cancer. Here, our data show that SLIT inhibits cancer cell migration by activating RhoA and that myosin 9b (Myo9b) is a ROBO-interacting protein that suppresses RhoA activity in lung cancer cells. Structural analyses revealed that the RhoGAP domain of Myo9b contains a unique patch that specifically recognizes RhoA. We also determined that the ROBO Intracellular domain interacts with the Myo9b RhoGAP domain and inhibits its activity; therefore, SLIT-dependent activation of RhoA is mediated by ROBO inhibition of Myo9b. In a murine model, compared with control lung cancer cells, SLIT-expressing cells had a decreased capacity for tumor formation and lung metastasis. Evaluation of human lung cancer and adjacent nontumor tissues revealed that Myo9b is upregulated in the cancer tissue. Moreover, elevated Myo9b expression was associated with lung cancer progression and poor prognosis. Together, our data identify Myo9b as a key player in lung cancer and as a ROBO-interacting protein in what is, to the best of our knowledge, a newly defined SLIT/ROBO/Myo9b/RhoA signaling pathway that restricts lung cancer progression and metastasis. Additionally, our work suggests that targeting the SLIT/ROBO/Myo9b/RhoA pathway has potential as a diagnostic and therapeutic strategy for lung cancer.

  • Detection of Bacillus anthracis spores by super-paramagnetic lateral-flow immunoassays based on 'Road Closure'

    分类: 生物学 >> 生物物理学 提交时间: 2016-05-11

    摘要: Detection of Bacillus anthracis in the field, whether as a natural infection or as a biothreat remains challenging. Here we have developed a new lateral-flow immunochromatographic assay (LFIA) for B. anthracis spore detection based on the fact that conjugates of B. anthracis spores and super-paramagnetic particles labeled with antibodies will block the pores of chromatographic strips and form retention lines on the strips, instead of the conventionally reported test lines and control lines in classic LFIA. As a result, this new LFIA can simultaneously realize optical, magnetic and naked-eye detection by analyzing signals from the retention lines. As few as 500-700 pure B. anthracis spores can be recognized with CV values less than 8.31% within 5 min of chromatography and a total time of 20 min. For powdery sample tests, this LFIA can endure interference from 25% (w/v) milk, 10% (w/v) baking soda and 10% (w/v) starch without any sample pre-treatment, and has a corresponding detection limit of 6 x 10(4) spores/g milk powder, 2 x 10(5) spores/g starch and 5 x 10(5) spores/g baking soda. Compared with existing methods, this new approach is very competitive in terms of sensitivity, specificity, cost and ease of operation. This proof-of-concept study can also be extended for detection of many other large-sized analytes. (C) 2014 The Authors. Published by Elsevier B.V.

  • CHD2 is Required for Embryonic Neurogenesis in the Developing Cerebral Cortex

    分类: 生物学 >> 生物物理学 提交时间: 2016-05-11

    摘要: Chromodomain helicase DNA-binding protein 2 (CHD2) has been associated with a broad spectrum of neurodevelopmental disorders, such as autism spectrum disorders and intellectual disability. However, it is largely unknown whether and how CHD2 is involved in brain development. Here, we demonstrate that CHD2 is predominantly expressed in Pax6(+) radial glial cells (RGs) but rarely expressed in Tbr2(+) intermediate progenitors (IPs). Importantly, the suppression of CHD2 expression inhibits the self-renewal of RGs and increases the generation of IPs and the production of neurons. CHD2 mediates these functions by directly binding to the genomic region of repressor element 1-silencing transcription factor (REST), thereby regulating the expression of REST. Furthermore, the overexpression of REST rescues the defect in neurogenesis caused by CHD2 knockdown. Taken together, these findings demonstrate an essential role of CHD2 in the maintenance of the RGs self-renewal levels, the subsequent generation of IPs, and neuronal output during neurogenesis in cerebral cortical development, suggesting that inactivation of CHD2 during neurogenesis might contribute to abnormal neurodevelopment. Stem Cells2015;33:1794-1806