您选择的条件: JIN Shuang
  • Effect of topography on the changes of Urumqi Glacier No. 1 in the Chinese Tianshan Mountains

    分类: 地球科学 >> 地理学 提交时间: 2022-10-12 合作期刊: 《干旱区科学》

    摘要:

    Topography plays an important role in determining the glacier changes. However, topography has often been oversimplified in the studies of the glacier changes. No systematic studies have been conducted to evaluate the relationship between the glacier changes and topographic features. The present study provided a detailed insight into the changes in the two branches (east branch and west branch) of Urumqi Glacier No. 1 in the Chinese Tianshan Mountains since 1993 and systematically discussed the effect of topography on the glacier parameters. This study analyzed comprehensive recently observed data (from 1992/1993 to 2018/2019), including mass balance, ice thickness, surface elevation, ice velocity, terminus, and area, and then determined the differences in the changes of the two branches and explored the effect of topography on the glacier changes. We also applied a topographic solar radiation model to analyze the influence of topography on the incoming shortwave radiation (SWin) across the entire glacier, focusing on the difference in the SWin between the two branches. The glacier mass balance of the east branch was more negative than that of the west branch from 1992/1993 to 2018/2019, and this was mainly attributed to the lower average altitude of the east branch. Compared with the west branch, the decrease rate of the ice velocity was lower in the east branch owing to its relatively increased slope. The narrow shape of the west branch and its southeast aspect in the earlier period resulted in a larger glacier terminus retreat of the west branch. The spatial variability of the SWin across the glacier surface became much larger as altitude increased. The SWin received by the east branch was slightly larger than that received by the west branch, and the northern aspect could receive more SWin, leading to glacier melting. In the future, the difference of the glacier changes between the two branches will continue to exist due to their topographic differences. This work is fundamental to understanding how topographic features affect the glacier changes, and provides information for building different types of relationship between the glacier area and ice volume to promote further studies on the basin-scale glacier classification.

  • Effect of topography on the changes of Urumqi Glacier No. 1 in the Chinese Tianshan Mountains

    分类: 地球科学 >> 地理学 提交时间: 2022-07-18 合作期刊: 《干旱区科学》

    摘要: Topography plays an important role in determining the glacier changes. However, topography has often been oversimplified in the studies of the glacier changes. No systematic studies have been conducted to evaluate the relationship between the glacier changes and topographic features. The present study provided a detailed insight into the changes in the two branches (east branch and west branch) of Urumqi Glacier No. 1 in the Chinese Tianshan Mountains since 1993 and systematically discussed the effect of topography on the glacier parameters. This study analyzed comprehensive recently observed data (from 1992/1993 to 2018/2019), including mass balance, ice thickness, surface elevation, ice velocity, terminus, and area, and then determined the differences in the changes of the two branches and explored the effect of topography on the glacier changes. We also applied a topographic solar radiation model to analyze the influence of topography on the incoming shortwave radiation (SWin) across the entire glacier, focusing on the difference in the SWin between the two branches. The glacier mass balance of the east branch was more negative than that of the west branch from 1992/1993 to 2018/2019, and this was mainly attributed to the lower average altitude of the east branch. Compared with the west branch, the decrease rate of the ice velocity was lower in the east branch owing to its relatively increased slope. The narrow shape of the west branch and its southeast aspect in the earlier period resulted in a larger glacier terminus retreat of the west branch. The spatial variability of the SWin across the glacier surface became much larger as altitude increased. The SWin received by the east branch was slightly larger than that received by the west branch, and the northern aspect could receive more SWin, leading to glacier melting. In the future, the difference of the glacier changes between the two branches will continue to exist due to their topographic differences. This work is fundamental to understanding how topographic features affect the glacier changes, and provides information for building different types of relationship between the glacier area and ice volume to promote further studies on the basin-scale glacier classification.

  • Ice thickness distribution and volume estimation of Burqin Glacier No. 18 in the Chinese Altay Mountains

    分类: 地球科学 >> 地理学 提交时间: 2021-01-15 合作期刊: 《干旱区科学》

    摘要: Information on the thickness distribution and volume of glacier ice is highly important for glaciological applications; however, detailed measurements of the ice thickness of many glaciers in the Chinese Altay Mountains remain lacking. Burqin Glacier No. 18 is a northeast-orientated cirque glacier located on the southern side of the Altay Mountains. This study used PulseEKKO® PRO 100A enhancement ground-penetrating radar (GPR) to survey the ice thickness and volume of Burqin Glacier No. 18 in summer 2018. Together with GPR surveying, spatial distributed profiles of the GPR measurements were concurrently surveyed using the real-time kinematic (RTK) global navigation satellite system (GNSS, Unistrong E650). Besides, we used QuickBird, WorldView-2, and Landsat TM to delineate accurate boundary of the glacier for undertaking estimation of glacier ice volume. GPR measurements revealed that the basal topography of profile B1-B2 was flat, the basal topography of profile C1-C2 presented a V-type form, and the basal topography of profile D1-D2 had a typical U-type topographic feature because the bedrock near the central elevation of the glacier was relatively flat. The longitudinal profile A1-A2 showed a ladder-like distribution. Glacier ice was thin at the terminus and its thickness increased gradually from the elevation of approximately 2620 m a.s.l. along the main axis of the glacier tongue with an average value of 80 (±1) m. The average ice thickness of the glacier was determined as 27 (±2) m and its total ice volume was estimated at 0.031 (±0.002) km3. Interpretation of remote sensing images indicated that during 1989–2016, the glacier area reduced from 1.30 to 1.17 km2 (reduction of 0.37%/a) and the glacier terminus retreated at the rate of 8.48 m/a. The mean ice thickness of Burqin Glacier No. 18 was less than that of the majority of other observed glaciers in China, especially those in the Qilian Mountains and Central Chinese Tianshan Mountains; this is probably attributable to differences in glacier type and climatic setting.