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We present an amplitude analysis of the decay D° — K~ w7777~ based on a data sample of
2.93 fb~! acquired by the BESIII detector at the ¢(3770) resonance. With a nearly background
free sample of about 16000 events, we investigate the substructure of the decay and determine the
relative fractions and the phases among the different intermediate processes. Our amplitude model
includes the two-body decays D — K*%p° D° — K~a}(1260) and D° — K (1270)7 ™, the three-



body decays D° — K*°zT7~ and D° — K ntp° as well as the four-body nonresonant decay

D’ 5 K rntntr
fraction of 54.6%.

PACS numbers: 13.20.Ft, 14.40.Lb
I. INTRODUCTION

The decay D° — K ntaxtm~ is one of the three
golden decay modes of the neutral D meson (the other
two are D — K—7t and D° — K~7t7%). Due to a
large branching fraction and low background it is well
suited to use as a reference channel for other decays of
the DY meson @] An accurate knowledge of its resonant
substructure and the relative amplitudes and phases are
important to reduce systematic uncertainties in analy-
ses that use this channel for reference. In particular,
the lack of knowledge of the substructure leads to one of
the largest systematic uncertainties in the measurement
of the absolute branching fractions of the D hadronic
decays @] The knowledge of the decay substructure in
combination with a precise measurement of strong phases
can also help to improve the measurement of the CKM
angle  (the phase of V;, relative to V,3) [3]. In the
measurement of v, the parametrization model is an im-
portant input information in a model dependent method
and also can be used to generate Monte Carlo (MC)
simulations to check the sensitivity in a model indepen-
dent method M] Furthermore, the branching fractions
of intermediate processes can be used to understand the
DY — D° mixing in theory [5, ld].

The decay D° — K- rntatr~ was studied by Mark
ITI [7] and E691 |§] more than twenty years ago. Both
measurements are affected by low statistics. Using about
1300 signal events, Mark III obtained the branching frac-
tions for D° — K~aj(1260), D° — K*0p° DO —
K (1270)7t, as well as for the three- and four-body
nonresonant decays. Based on 1745 signal events and
800 background events, E691 obtained a similar result
but without considering the D° — K; (1270)7" decay
mode. The results from Mark III and E691 have large
uncertainties. Therefore, further experimental study of
D — K—rtatax~ decay is of great importance for im-
proving the precision of future measurements.

In this paper, a data sample of about 2.93 fb~* ﬂg, ]
collected at the 1 (3770) resonance with the BESIII detec-
tor in 2010 and 2011 is used. We perform an amplitude
analysis of the decay D° — K~ w w7~ (the inclusion of
charge conjugate reactions is implied) to study the reso-
nant substructure in this decay. The 1 (3770) decays into
a DYDY pair without any additional hadrons. We employ
a double-tag method to measure the branching fraction.
In order to suppress the backgrounds from other charmed
meson decays and continuum (QED and ¢g) processes,
only the decay mode D° — KT7~ is used to tag the
DODP pair. A detailed discussion of background can be
found in Sec. [IIl The amplitude model is constructed

~. The dominant intermediate process is D° — K~ a7 (1260), accounting for a fit

using the covariant tensor formalism ﬂﬂ]

II. DETECTION AND DATA SETS

The BESIII detector is described in detail in Ref. ﬂﬁ]
The geometrical acceptance of the BESIII detector is
93% of the full solid angle. Starting from the interaction
point (IP), it consists of a main drift chamber (MDC), a
time-of-flight (TOF) system, a CsI(Tl) electromagnetic
calorimeter (EMC) and a muon system (MUC) with lay-
ers of resistive plate chambers (RPC) in the iron return
yoke of a 1.0 T superconducting solenoid. The momen-
tum resolution for charged tracks in the MDC is 0.5% at
a transverse momentum of 1 GeV/c.

Monte Carlo (MC) simulations are based on
GEANT4 [13]. The production of ¢(3770) is simulated
with the KKMC M] package, taking into account the
beam energy spread and initial-state radiation (ISR).
The PHOTOS ] package is used to simulate the final-
state radiation (FSR) of charged tracks. The MC sam-
ples, which consist of ¥(3770) decays to DD, non-DD,
ISR production of low mass charmonium states and con-
tinuum processes, are referred to as “generic MC” sam-
ples. The EvtGen HE] package is used to simulate the
known decay modes with branching fractions taken from
the Particle Data Group (PDG) [1], and the remain-
ing unknown decays are generated with the LundCharm
model [17]. The effective luminosities of the generic MC
samples correspond to at least 5 times the data sample
luminosity. They are used to investigate possible back-
grounds. The decay D° — KY(ntn~)K~nt has the
same final state as signal and is investigated using a ded-
icated MC sample with the decay chain of ¥(3770) —
DD with D° — K2K—7" and DY — K*tr—, re-
ferred to as the “K¢Km MC”. The decay model of
D° — K3K 7" is generated according to CLEO’s re-
sults ﬂﬁ] In amplitude analysis, two sets of signal
MC samples using different decay models are generated.
One sample is generated with an uniform distribution
in phase space for the DY — K~ ntrt 7~ decay, which
is used to calculate the MC integrations and called the
“PHSP MC” sample. The other sample is generated ac-
cording to the results obtained in this analysis for the
DY —» K—ntntn~ decay. It is used to check the fit
performance, calculate the goodness of fit and estimate
the detector efficiency, and is called the “SIGNAL MC”
sample.



IIT. EVENT SELECTION

Good charged tracks are required to have a point of
closest approach to the interaction point (IP) within 10
cm along the beam axis and within 1 cm in the plane
perpendicular to beam. The polar angle € between the
track and the e’ beam direction is required to satisfy
|cosf| < 0.93. Charged particle identification (PID)
is implemented by combining the energy loss (dE/dzx)
in the MDC and the time-of-fight information from the
TOF. Probabilities P(K) and P(w) with the hypothe-
ses of K or 7 are then calculated. Tracks without PID
information are rejected. Charged kaon candidates are
required to have P(K) > P(r), while the m candidates
are required to have P(mw) > P(K). The average efficien-
cies for the kaon and pions in K~ w77~ are ~ 98% and
~ 99% respectively. The D°DO pair with D® — K+x~
and D° — K~ 7ntntr~ is reconstructed with the require-
ment that the two DY mesons have opposite charm and
do not have any tracks in common. Since the tracks in
K7t 7~ have distinct momenta from those in K7,
misreconstructed signal events and K /7 particle misiden-
tification are negligible. Furthermore, a vertex fit with
the hypothesis that all tracks originate from the IP is
performed, and the x? of the fit is required to be less
than 200.

For the Ktn~ and K- wntwtn~ combinations, two
variables, Mpc and AFE, are calculated:

Mpc = \ Egeam _ﬁ%)’ (1)

and
AFE = ED — Ebcam; (2)

where pp and Ep are the reconstructed momentum and
energy of a D candidate, Epeam is the calibrated beam
energy. The signal events form a peak around zero in
the AFE distribution and around the D° mass in the
Mg distribution. We require —0.03 < AE < 0.03 GeV
for the K7~ final state, —0.033 < AE < 0.033 GeV
for the K- ntnTx~ final state and 1.8575 < Mpc <
1.8775 GeV/c? for both of them. The corresponding AE
and Mgy of selected candidate are shown in Fig.[I, where
the background is negligible.

To ensure the D° meson is on shell and improve the
resolution, the selected candidate events are further sub-
jected to a five-constraint (5C) kinematic fit, which con-
strains the total four-momentum of all final state parti-
cles to the initial four-momentum of the ete™ system,
and the invariant mass of signal side K77t 7~ con-
strains to the D° mass in PDG @] We discard events
with a x? of the 5C kinematic fit larger than 40. In or-
der to suppress the background of D — KYK 7" with
K2 — 777~ which has the same final state as our signal
decay, we perform a vertex constrained fit on any 777~
pair in the signal side if the 77~ invariant mass falls into

the mass window [m+ .- —mgo| < 0.03 GeV/c? (Mo is
the K2 nominal mass ﬂ]), and reject the event if the cor-
responding significance of decay length (e.g. the distance
of the decay vertex to IP) is larger than 20. The K§ veto
eliminates about 80% D° — KYK ~7" background while
retaining about 99% of signal events. After applying all
selection criteria, 15912 candidate events are obtained
with a purity of 99.4%, as estimated by MC simulation.

The MC studies indicate that the dominant back-
ground arises from the DY — K3K ~n" decay, the cor-
responding produced number of events is estimated ac-
cording to

N(KSK nt|Ktn™) =
Y(K-rtata |Ktr™)
e(K—ntata—|K+n™)

B(KYK ) (3)
B(K-rtrtn—)’

where N(K{K nt|KTn~) is the production of
P(3770) — D°D° with D° — KK 7T and
D — K*tn~, Y(K ntatr~|Ktr~) is the signal
yield with background subtracted but without efficiency
correction applied and € is the corresponding efficiency
obtained from the SIGNAL MC sample, which is gener-
ated according to the results of fit to data whose peaking
background estimated from the generic MC sample.
B(K~nrntn~) and B(KYK n") are the branching
fractions for D — K~-rtrt7r~ and D° — KYK 7+,
respectively, which are quoted from the PDG [1]. Ac-
cording to Eq. ([B]), the number of peaking background
events (Npeaking) is estimated to be 96.8 + 14.5.

All other backgrounds from DD, ¢ and non-DD de-
cays are studied with the generic MC sample. Their to-
tal contribution is estimated to be less than ten events,
of which 5.5 and 2.0 are from the D°D° decays and
the non-DD decays, respectively. These backgrounds
are neglected in the following analysis and their effect
is considered as a systematic uncertainty, as discussed in

Sec. V1 2]

IV. AMPLITUDE ANALYSIS

The decay modes which may contribute to the D° —
K-atata~ decay are listed in Table [, where the sym-
bols S, P, V, A, and T denote a scalar, pseudoscalar,
vector, axial-vector, and tensor state, respectively. The
letters S, P, and D in square brackets refer to the relative
angular momentum between the daughter particles. The
amplitudes and the relative phases between the different

decay modes are determined with a maximum likelihood
fit.



¥ ,{\ 1
3 8- (a) i 3
> ot [ ]
o 600 i -
o r [ ]
E [ 4
£ 400 o 3
o F ' t ]
> . i 1 b
W 200- o .
i L ' ”NL ]
L . , p
e et L N L
91 0.05 0 0.05 0.1
AE(GeV)
51010 o s B s ey B B S
F H -
) ' ]
310005 ! .
i [ by ]
hay 1l
2 [ o ]
& 500- ' N
> 5 + 4
o[ P ]
L N ]
N ‘;LL*" I ‘wl Leyu ]
91 20.05 0 0.05 0.1
AE(GeV)

L
1500 -
L i 4
2 [ (b . ]
= ' ]
~ lOOU'j o ]
ry F -
2 [ ¢ ]
c L ¢ ]
2 s00- . ]
m , ]
[ " ]
o L LJ ‘L \\Jl -
184 1.86 188
Mg(GeV/d)
A S S
1500- ! 3
2 F (@ it ]
= L N ]
e ]
1000 i .
e i
2 I . ]
c L il ]
L%’ 500 . ]
o 1. ._J_v' . '\,\Jl L]
18 86 188
sc(GeV/d)

FIG. 1. Distributions of data for AE [(a) and (c)] and Mgc [(b) and (d)] in K7~ side [(a) and (b)] and in K~ 7 t7t 7™ side
[(c) and (d)]. The arrows indicate the selection criteria. In each plot, all selection criteria described in this section have been

applied except the one on the variable.

A. Likelihood function construction

The likelihood function is the product of the probabil-
ity density function (PDF) of the observed events. The
signal PDF fs(p;) is given by

€(pj)|M (p;)” Ra(p;)
[ €(p;)|M(p;)1?Ra(py)dp;’

where €(p;) is the detection efficiency parametrized in
terms of the final four-momenta p;. The index j refers
to the different particles in the final state. R4(p;)dp; is
the standard element of the four-body phase space ﬂi_lﬂ,
which is given by

fs(pj) =

(4)

4
d’p,
_ 54 . vy
Ru(pj)dpj = 6" | ppo — ;pj H T (5)

M (p;) is the total decay amplitude which is modeled as
a coherent sum over all contributing amplitudes

pi) =Y cnAn(p;), (6)

where the complex coefficient ¢,, = pn e (pn and ¢, are
the magnitude and phase for the n'® amplitude, respec-
tively) and A, (p;) describe the relative contribution and
the dynamics of the n*" amplitude. In four-body decays,
the intermediate amplitude can be a quasi-two-body de-
cay or a cascade decay amplitude, and A, (p;) is given
by

An(pj) = Pp(ma) P2 (m2)Sn(p;) Fp (05) F (05) EY (p5),(7)

where the indices 1 and 2 correspond to the two interme-
diate resonances. Here, P%¥(m,) and F(p;) (o = 1,2)

are the propagator and the Blatt-Weisskopf barrier fac-
tor HE], respectively, and FP(p;,) is the Blatt-Weisskopf
barrier factor of the D° decay. The parameters m; and
ms in the propagators are the invariant masses of the
corresponding systems. For nonresonant states with or-
bital angular momentum between the daughters, we set
the propagator to unity, which can be regarded as a very
broad resonance. The spin factor S, (p;) is constructed
with the covariant tensor formalism [11]. In practice, the
presence of the two 7™ mesons imposes a Bose symmetry
in the K~ 7wt 7nT 7~ final state. This symmetry is explic-
itly accounted for in the amplitude by exchange of the
two pions with the same charge.

The contribution from the background is subtracted in
the likelihood calculation by assigning a negative weight
to the background events

Naata Niig

mL= Infs(})— 3w fs@l), (8
k=1

k=1

where Ngata is the number of candidate events in data,
wZ,kg and Npx, are the weight and the number of
events from the background MC sample, respectively.
In the nominal fit, only the peaking background D° —
K2K~nt is considered, and the weight wz,kg is fixed to

Npeaking/ Nbkg- pf and p;?/ are the four-momenta of the

4t final particle in the k" event of the data sample and

in the k" event of the background MC sample, respec-
tively.

The normalization integral is determined by a MC
technique taking into account the difference of detector
efficiencies for PID and tracking between data and MC
simulation. The weight for a given MC event is defined



as

€j,data(P;)
Ye(ps) 1:[ o) )
where € data(p;) and €;mc(p;) are the PID or track-
ing efficiencies for charged tracks as a function of p; for
the data and MC sample, respectively. The efficiencies
€;.data(pj) and €; mc(p;) are determined by studying the
DY - K—ntrnt7n~ sample for data and the MC sample
respectively. The MC integration is then given by

[ M) R,
Nuc |M(p§Mc))|2%(p§MC) (10)

1
Mo A MG

)

where kyc is the index of the kf\}[lc event of the MC sam-
ple and Ny¢ is the number of the selected MC events.
Mee"(p;) is the PDF function used to generate the MC
samples in MC integration. In the numerator of Eq. (),
e(pj) is independent of the fitted variables, so it is re-
garded as a constant term in the fit.

1. Spin factors

Due to the limited phase space available in the decay,
we only consider the states with angular momenta up to
2. As discussed in Ref. ﬂﬂ], we define the spin projection

s
operator P;Sl-)--usmmug for a process a — bc as

1 PapPav
Pu) = =g + =25 (11)
for spin 1,
2 _
PISIL2V1V2 -

2

1V17 p2l2 Hiv2 ™ p2v1 3 H1p2™ V1V2

for spin 2. The covariant tensors fﬁlm " for the final
states of pure orbital angular momentum L are con-
structed from relevant momenta pg, py, Pe ﬂl_1|]

Eﬁl”'ﬂL = (_1)Lplsf')“#LV1~'VLTV1 e TULa (13)
where 7 = p, — pe.

Ten kinds of decay modes used in the analysis are listed
in Table [ We use TL(“L)H ., to represent the decay from

the D meson and f,(ﬁ up, to represent the decay from the
intermediate state.

2. Blatt-Weisskopf barrier factors

The Blatt-Weisskopf barrier factor [19] FL(p;) is a
function of the angular momentum L and the four-
momenta p; of the daughter particles. For a process

a — be, the magnitude of the momentum ¢ of the daugh-
ter b or ¢ in the rest system of a is given by

Sq + Sp — 50)2
q:\/g_sb (14)
4s,

with s5 = Ej — p3,6 = a,b,c. The Blatt-Weisskopf
barrier factor is then given by

Fr(q) = 2" X1(q), (15)

where z = qR. R is the effective radius of the barrier,
which is fixed to 3.0 GeV ™! for intermediate resonances
and 5.0 GeV ™ for the D° meson. X,(q) is given by

Xr-o(q) =1, (16)

Xr—1(q) = (17)

3

22+1

13
Ximal®) =\ sy "

3. Propagator

The resonances K** and aj (1260) are parametrized as
relativistic Breit-Wigner function with a mass depended
width

1
(m3 — sq) —imel'(m)’

P(m) = (19)
where mg is the mass of resonance to be determined.
T'(m) is given by

2041 2
X
rom =0 (L) (2) (£22) . o
q% m / \ X1(qo)
where qo denotes the value of ¢ at m = mg. The
K1 (1270) is parametrized as a relativistic Breit-Wigner
function with a constant width I'(m) = Ty, and the pY is

parametrized with the Gounaris-Sakurai line shape @],
which is given by

1+die
m) = mo 21
Pasm) = G 3 fom) —morGy
where
F(m) = To ™2 [¢*(h(m) — h(mo))
% (22)

dh
+(mj — m2)q§m‘ - 2}7
m 7777/0

and the function h(m) is defined as

hm) = 2 L1 (m”q), (23)

T™m 2m,



TABLE I. Spin factors S(p) for different decay modes.

Decay mode S(p)

D[S] = V1 Vs, V1 — Py P2, Vo — P3Py EOF (V)T (Vo)

DI[P] — V1 Va2, Vi = P1 P2, Vo = P3Py €urop” (D)T (1)V( ) WAVED (V)
D[D] = V1Va, Vi — Py Py, Vo — P3Py T<2W( ) N(V1)ED (Va)

D — APy, A[S] — VP2, V= P3Py ( ) (A) (1)”( )

D — APy, A[D] — VPs, V — P3Py T(l)“( D (A DY (V)

D — APl,A—> SPQ, S— P3Py
D— VS, V= PPy, S— P3Py
D — V1P1,V1—> VQPQ, Vg—) P3P4
D — PP17P—) VP27 V — P3Py
D — TS7 T — 13'113'27 S — P3P4

FOR(D)ED (A)
T (V)
eunoPlyy 45, PP, 0%,
P (P2)ii) (V)
TPm (D)) (T)

with
dh

d(m2) m2=m2

0)(8q3)~"

= h(m

where m, is the charged pion mass. The normal-
ization condition at Pgg(0) fixes the parameter d =
£(0)/(Dgmo). Tt is found to be [20]

3 m? 2 2
d=>"r 0, <m°+ qo) o TR0 (95)
T g5 2m, 2mqq g,

4. Parametrization of the Km S-wave

For the K7 S-wave [denoted as (K)s_wave], We use
the same parametrization as BABAR ], which is ex-
tracted from scattering data @] The model is built from
a Breit-Wigner shape for the K (1430)° combined with
an effective range parametrization for the nonresonant
component given by

A(mKﬂ') = FSiD(SFGMF + stnaRei‘;Reim;F’ (26)
with
1|1 rq
0p = ¢p + cot — 4+ =, (27)
aq 2
1 | M (mkx
op = ¢r + tan 1 |:]\42(—77:;%():| , (28)

where a and r denote the scattering length and effec-
tive interaction length. F (¢r) and R (¢r) are the rel-
ative magnitudes (phases) for the nonresonant and res-
onant terms, respectively. ¢ and I'(mg,) are defined as
in Eq. (Id) and Eq. (20), respectively. In the fit, the
parameters M, I', F, ¢p, R, ¢, a and r are fixed to
the values obtained from the fit to the D — K%rnm
Dalitz plot ﬂﬂ as summarized in Table [[II These fixed
parameters will be varied within their uncertainties to es-
timate the corresponding systematic uncertainties, which
is discussed in detail in Sec. [VI 1l

— (2md)7 + (2rm3) {24)

TABLE II. K7 S-wave parameters, obtained from the fit to
the D° — K3nt7~ Dalitz plot from BABAR [21)].

M (GeV/c?) 1.463 £ 0.002

I'(GeV/c?*) 0.233 4 0.005

F 0.80 £ 0.09
o 2.33+0.13
R 1(fixed)
bR ~5.31 +0.04
a 1.07£0.11
T —1.8+0.3

B. Fit fraction and the statistical uncertainty

We divide the fit model into several components ac-
cording to the intermediate resonances, which can be
found in Sec. [Vl The fit fractions of the individual com-
ponents (amplitudes) are calculated according to the fit
results and are compared to other measurements. In
the calculation, a large phase space (PHSP) MC sample
with neither detector acceptance nor resolution involved
is used. The fit fraction for an amplitude or a component
(a certain subset of amplitudes) is defined as

Ngen
PRy = 2t @) (20)

SR M (k)2

where An(ph) is either the n'®
ann(pf)] or the n'® component of a coherent sum of
amplitudes [An(pf) = > cn, An, (pY)], Ngen is the num-
ber of the PHSP MC events.

amplitude [A, () =

To estimate the statistical uncertainties of the fit frac-
tions, we repeat the calculation of fit fractions by ran-
domly varying the fitted parameters according to the er-
ror matrix. Then, for every amplitude or component, we
fit the resulting distribution with a Gaussian function,
whose width gives the corresponding statistical uncer-
tainty.



C. Goodness of fit

To examine the performance of the fit process, the
goodness of fit is defined as follows. Since the DY and
all four final states particles have spin zero, the phase
space of the decay D — K~ 7tnTn~ can be completely
described by five linearly independent Lorentz invariant
variables. Denoting as 7 the one of the two identical
pions which results in a higher 777~ invariant mass and
the other pion as 75 , we choose the five invariant masses
Tn7‘r1+7'r*7 mﬁ; Mg —ntn—> m7r1+7r2+7r* and mK*ﬂ'Tﬂ';' To
calculate the goodness of fit, the five-dimensional phase
space is first divided into cells with equal size. Then, ad-
jacent cells are combined until the number of events in
each cell is larger than 20. The deviation of the fit in each

exp
ya

T

p
quantified as x2 = ZZ:I Xf,, where N, and Np*P are the
number of the observed events and the expected number
determined from the fit results in the p‘" cell, respec-
tively, and n is the total number of cells. The number of
degrees of freedom (NDF) v is given by v = (n—1) —npar,
where npar is the number of the free parameters in the
fit.

cell is calculated, x, = and the goodness of fit is

V. RESULTS

In order to determine the optimal set of amplitude that
contribute to the decay D® — K ~ntnt7~, considering
the results in PDG [1], we start with the fit including the
components with significant contribution and add more
amplitude in the fit one by one. The corresponding sta-
tistical significance for the new amplitude is calculated
with the change of the log-likelihood value Aln L, taking
the change of the degrees of freedom Av into account.

In the K~ 7" and 777~ invariant mass spectra, there
are clear structures for K* and p°. The intermediate res-
onance K, (1270) is observed with K; (1270) — K*97~
or K= pY. In the 77wt 7~ invariant mass spectrum, a
broad bump appears. We find this bump can be fitted as
a; (1260), which was also observed by the Mark TIT [7] ex-
periment. If it is fitted with a nonresonant (p°7+) am-
plitude instead, we find that the significance for a; (1260)
with respect to (p°wT)a is larger than 100. The three-
body nonresonant states come from two kinds of con-
tributions, K~ 7+ p? and K*'7t7~. The K*°r— /K~ p°
can be in a pseudoscalar, a vector or an axial-vector
state, while the K~ 7% /777~ can be in a scalar state.
The four-body nonresonant states are relatively complex,
suchas D - VV, D - VS, D —- TS, D — TV, D —
AP with A — VP or SP, all of which may contribute
to the decay. Since the process D° — K~af (1260),
af (1260)[S] — p7t has the largest fit fraction, we fix
the corresponding magnitude and phase to 1.0 and 0.0
and allow the magnitudes and phases of the other pro-

cesses to vary in the fit.

We keep the processes with significance larger than
50 for the next iteration. The fit involving both the
K~af(1260) and the nonresonant K~ (p’7)s contri-
bution does not result in a significantly improvement
of fit, but the fit fractions of the two amplitudes are
much different with the assumption of only K ~a; (1260)
and are nearly 100% correlated. We avoid this kind
of case and only consider the resonant term, in agree-
ment with the analysis of Mark III ﬂ] For the process
D° — K[ (1270)x* with K, (1270)[S] — K*'r—, the
corresponding significance is found to be 4.3¢0 only, but
we still include it in the fit since the corresponding D-
wave process is found to have a statistical significance of
larger than 9o. Better projections in the invariant mass
spectra and an improved fit quality x? are also seen with
this S-wave process included.

Finally, we retain 23 processes categorized into seven
components. The other processes, not used in our nom-
inal results but have been tested when determining the
nominal fit model, are listed in Appendix A. The widths
and masses of K*0 and p° are determined by the fit. The
results of are listed in Table [IIl The K (1270) has a

TABLE III. Masses and widths of intermediate resonances
K™% and p°, the first and second uncertainties are statistical
and systematic, respectively.

Resonances  Mass (MeV/c?) Width (MeV/c?)
K*° 894.78 £0.75 £1.66 44.18 £1.57 £1.39
p° 779.14 £1.68 £ 3.98 148.42 £+ 2.87 £ 3.36

small fit fraction, and we fix its mass and width to the
PDG values [1]. The a;(1260) has a mass close to the up-
per boundary of the 777~ invariant mass spectrum.
Therefore, we determine its mass and width with a like-
lihood scan, as shown in Fig.[2l The scan results are

Mt (1260) = 1362 £ 13 MeV/c?,

_ > (30)

Lot (1260) = 942 £29 MeV/c?,
where the uncertainties are statistical only. The mass
and width of a; (1260) are fixed to the scanned values in
the nominal fit.

Our nominal fit yields a goodness of fit value of x? /v =
843.445/748 = 1.128. To calculate the statistical signifi-
cance of a process, we repeat the fit process without the
corresponding process included, and the changes of log-
likelihood value and the number of free degree are taken
into consideration. The projections for eight invariant
mass and the distribution of y are shown in Fig. Bl All
of the components, amplitudes and the significance of
amplitudes are listed in Table [Vl The fit fractions of
all components are given in Table [Vl The phases and fit
fractions of all amplitudes are given in Table [Vl
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FIG. 2. Likelihood scans of the width (a) and mass (b) of a; (1260).

TABLE IV. Statistical significances for different amplitudes.

Component Amplitude Significance (o)
D°[S] — K*0p° > 10.0
D° — K*0p° D°[P] — K*°p° > 10.0
D°[D] — K*%p° > 10.0
0 =T
P K ekt i) e g e e
0 _ _ — .0 __ D" — K (1270)7 ", K, (1270)[S] —» K*On~ 4.3
D? = Ky (1270)n™, Ky (1270) = K777 po Kr ((1270))7r - ((1270))[[1)]] — K™ 9.6
D° — K, (1270)n ", K, (1270) — K p° D° — K, (1270)r", K, (1270)[S] — K p° > 10.0
DY — (K )amT, (pUK*)A[D] — K p 7 9.6
0 40 D’ — (K~ p)pr™” 7.0
D7 = K-mwp D° — (K~ 7)s—wavep” 5.1
D° — (K= p°)ynt 6.8
DY — (K7 )pr™ 8.5
D° — K*Ontg~ D° - K*%(nt77)s 8.9
D° — (K*O TYyr T 9.7
D ((Kﬁﬂ_ )S wave 7T ) > 10.0
D’ - K~ ((7r T )sT ) > 10.0
D° = (K™ 7" )s—wave (777 7)s > 10.0
D — K—ntntn— D°[S] = (K~ 7))y (wﬂf v 8.8
D’ - (K7t )s wm(w T )v 5.8
D - (K7 h)yv(rTn7)s > 10.0
D° — (K~ 7)1 (ntn )s 6.8
D’ — (K~ 7h)s_ wm(w ) 9.7

VI. SYSTEMATIC UNCERTAINTIES

The source of systematic uncertainties are divided into
four categories: (I) amplitude model, (II) background es-
timation, (IIT) experimental effects and (IV) fitter per-
formance. The systematic uncertainties of the free pa-
rameters in the fit and the fit fractions due to different
contributions are given in units of the statistical standard
deviations ;¢ in Tables[VIIHIX] These uncertainties are
added in quadrature, as they are uncorrelated, to obtain
the total systematic uncertainties.

1. Amplitude model

Three sources are considered for the systematic un-
certainty due to the amplitude model: the masses and
widths of the K; (1270) and the a] (1260), the barrier
effective radius R and the fixed parameters in the Km S-
wave model. The uncertainty associated with the mass
and width of K, (1270) and the a] (1260) are estimated
by varying the corresponding masses and widths with 1o
of errors quoted in PDG [1], respectively. The uncer-
tainty related to the barrier effective radius R is esti-
mated by varying R within 1.5 — 4.5GeV ™! for the in-
termediate resonances and 3.0 — 7.0GeV ™! for the D°
in the fit. The uncertainty from the input parameters of
the K7 S-wave model are evaluated by varying the input
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TABLE V. Fit fractions for different components. The first and second uncertainties are statistical and systematic, respectively.

Component Fit fraction (%) Mark IID’s result E691’s result
DY — K*,° 123404405 142+16+5 13+£24+2
D° — K~ a (1260)(p°7") 54.64+28+3.7 49242448 4745410
D% — K; (1270)(K*°7 )7t 0.840.240.2

D° — K;(1270) (K~ p%)nt 34403405 66+£1.9+3 )

D° - K=zt p° 84+1.14+25 84+22+4 54+3+2
D° - K%z Tn~ 70+04+05 140+1.8+4 114+2+3
D —» K ntntn™ 21.9+06+£06 24242546 234+2+3

T —5U!
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FIG. 3. Distribution of (a) Myt (b) Myt (c) Mot (d) Mot (e) Myt (f) Myt (g) Mt and

(h) m,__+ +, where the dots with error are data, and curves are for the fit projections. The small red histograms in each
172

projection shows the D° — K%K~ 7t peaking background. In (d), a peak of K% can be seen, which is consistent with the MC
expectation. The dip around the K peak is caused by the requirements used to suppress the D° — K2K 7" background.
Plot (i) shows the fit (curve) to the distribution of the y (points with error bars) with a Gaussian function and the fitted values

of the parameters (mean and width of Gaussian).

values within their uncertainties. All the change of the
results with respect to the nominal one are taken as the
systematic uncertainties.

2. Background estimation

The sources of systematic uncertainty related to the
background include the amplitude and shape of the back-
ground D — K3K 7t and the other potential back-
grounds. The uncertainties related to the background
D — K2K n' is estimated by varying the number of
background events within 1o of uncertainties and chang-

ing the shape according to the uncertainties in PDF pa-
rameters from CLEO [18]. The uncertainty due to the
the other potential background is estimated by including
the corresponding background (estimated from generic
MC sample) in the fit.

3. Ezxperimental effects

The uncertainty related to the experimental effects in-
cludes two separate components: the acceptance differ-
ence between MC simulations and data caused by track-
ing and PID efficiencies, and the detector resolution. To
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TABLE VI. Phases and fit fractions for different amplitudes. The first and second uncertainties are statistical and systematic,

respectively.
Amplitude oi Fit fraction (%)
DOY[S] — K*p° 2.35+0.06 £0.18 6.540.5+0.8
DO[P] — K*p° —2.2540.0840.15 2.34+0.240.1
DO[D] — K*p° 2.49+0.06£0.11 7.940.4+0.7
D® — K~af (1260), a; (1260)[S] — pOnt 0(fixed) 53.24£2.844.0

DO — K~aj (1260), af (1260)[D] — p°nt  —2.1140.1540.21 0.3+£0.1+0.1
D% — K (1270)7+, K, (1270)[S] — K*On~ 1.48+0.21£0.24 0.1+0.1+£0.1
DO — K (1270)n+, K, (1270)[D] — K*97~ 3.00 £0.094£0.15 0.7 £0.2£0.2
DY — K (1270)nt, K, (1270) — K~ p° —2.46 £0.06 £0.21 3.440.340.5
DO — (K )anmt, (l°K)A[D] = K—p°  —0.434+0.09+£0.12 1.14+0.24+0.3
(K*po)pw+ —0.144£0.11+£0.10 744+1.6+5.7
= (K~ 7)s—waver® —2.4540.1940.47 2.04+0.7+1.9
— (K= pO)yrt —1.3440.1240.09 0.4+0.14+0.1
DO (K*O “prt —2.0940.12+0.22 24405405

DY — K*0(nt717)g

DY — (K*On~)yn™t

DY — (K~ 71)s_wavem )amT

DO — K~ ((zt7 )smt)a

DY — (K~ 7)s_wave (77 )s

DOS] = (K~ t)y(xtn )y

DO (K ™ )S wave(ﬂ- 7“-7)\/
S (Kt )s

(K= (n 7 )

( 7T+)S wavc(Tr ™ )T

—0.174+0.11£0.12 26£0.6+0.6
—2.13£0.10£0.11 0.8£0.1£0.1
—1.36 £0.08£0.37 5.6£09=£27
—2.23+0.08+0.22 13.1£1.94+2.2
—1.40+0.04£0.22 16.3£0.5£0.6
1.59+0.13+£0.41 54+£124+19
—0.16 £0.17+0.43 1.9+0.6+1.2
2.58+£0.08£0.25 29+05+1.7
—2.924+0.14+0.12 0.3£0.1+0.1
2.454+0.12+£0.37 05+0.1+0.1

TABLE VII. Systematic uncertainties on masses and widths
of intermediate resonances K*° and p°.

Source (o5
11 (Ifltat)lv total (7stat)

2.21 0.04 0.13 0.10 2.22
I'xo 0.87 0.05 0.17 0.07 0.89
m,0 2.37 0.08 0.12 0.08 2.37

P

I po 1.16 0.04 0.11 0.12 1.17

Parameter

m g «0

determine the systematic uncertainty due to tracking and
PID efficiencies, we alter the fit by shifting the 7.(p) in
Eq. @) within its uncertainty, and the changes of the
nominal results is taken as the systematic uncertainty.
The uncertainty caused by resolution is determined as
the difference between the pull distribution results ob-
tained from simulated data using generated and fitted
four-momenta, as described in Sec. [VI 4l

4. Fitter performance

The uncertainty from the fit process is evaluated by
studying toy MC samples. An ensemble of 250 sets of
SIGNAL MC samples with a size equal to the data sam-
ple are generated according to the nominal results in
this analysis. The SIGNAL MC samples are fed into
the event selection, and the same amplitude analysis is
performed on each simulated sample. The pull variables,

M are defined to evaluate the corresponding un-

certamty, where Vinput is the input value in the generator,
Viay and og¢ are the output value and the corresponding
statistical uncertainty, respectively. The distribution of
pull values for the 250 sets of sample are expected to be
a normal Gaussian distribution, and any shift on mean
and widths indicate the bias on the fit values and its
statistical uncertainty, respectively.

Small biases for some fitted parameters and fit frac-
tions are observed. For the pull mean, the largest bias is
about 19% of a statistical uncertainty with a deviation
of about 3.00 from zero. For the pull width, the largest
shift is 0.87 & 0.04, about 3.0 standard deviations from
1.0. We add in quadrature the mean and the mean error
in the pull and multiply this number with the statistical
error to get the systematic error. The fit results are given
in Tables XNXTIl The uncertainties in Tables XX are
the statistical uncertainties of the fits to the pull distri-
butions.

VII. CONCLUSION

An amplitude analysis of the decay D* — K~ 7t ntn
has been performed with the 2.93 fb~! of ete™ collision
data at the ¢(3770) resonance collected by the BESIII de-
tector. The dominant components, D® — K~a] (1260),
DY — K*0p% D° — four-body nonresonant decay and
three-body nonresonant D — K—ntp" improve upon
the earlier results from Mark IIT and are consistent with



TABLE VIII. Systematic uncertainties on fit fractions for different components.
Source (ostat)

I I 11 IV
DV — K*0p0 1.12 0.06 0.11 0.08 1.13
DY — K~a} (1260) 1.32 0.09 0.12 0.06 1.33
D% — K (1270)(K*°7~)x* 1.41 0.02 0.12 0.10 1.42
DO — K (1270) (K~ p%) 7t 1.58 0.04 0.23 0.06 1.60

Fit fraction total (ostat)

DY — K=t p0 2.22 0.10 0.12 0.15 2.23
DO — K*O0xtm— 1.32 0.08 0.13 0.10 1.34
DY —» K—ntata— 0.94 0.10 0.09 0.12 1.00

TABLE IX. Systematic uncertainties on phases and fit fractions for different amplitudes.

Source (0stat)

Pi 1 on o v total (9siat)
DO[S] — K*0p0 2.96 0.04 0.14 0.13 2.97
DO[P] — K*0p0 1.98 0.04 0.11 0.12 1.98
DO[D] — K*0p0 1.78 0.03 0.18 0.09 1.79

D° — K~a} (1260), a; (1260
DO — K (1270)7+ K, (1270
DO — K[ (1270)7+,K, (1270
DO — K (1270)r* K, (1270

[D] — %7t 1.38 0.02 0.09 0.09 1.39
[S] = K*O7~ 1.10 0.07 0.10 0.09 1.11
[D] — K*O7n~ 1.61 0.06 0.11 0.06 1.62
— K~ p 3.61 0.03 0.09 0.13 3.62

= =

DO — (pOK~)ant 1.28 0.06 0.14 0.09 1.29
DY — (K= p®)pnt 0.92 0.10 0.10 0.07 0.93
DY — (K~ 71)s_ waver® 2.46 0.06 0.10 0.09 2.47
DO — (K= p0)ynt 0.74 0.01 0.09 0.08 0.75
DY — (K*0x~)prnt 1.82 0.03 0.09 0.06 1.82
DO — K*(ntn )s 1.07 0.04 0.12 0.11 1.08
D® — (K*0n~)ynt 1.00 0.02 0.10 0.18 1.02
DY — (K~ 7T)s_wavem )amt 4.78 0.15 0.12 0.07 4.79
DY — K= ((rtm )gmt)a 2.69 0.13 0.10 0.07 2.70
DO = (K~ 7H)s_wave (T 77 )g 6.27 0.04 0.10 0.12 6.27
DO[S] = (K~ 7 )y (rTm )y 3.28 0.06 0.09 0.06 3.28
DO — (K~ 7)) s—wave (T 77)v 2.59 0.09 0.10 0.10 2.60
DY = (K~ nt)y(rtn)s 3.07 0.09 0.10 0.18 3.08
DO — (K~nt)p(ntn7)s 0.81 0.04 0.12 0.06 0.82
DY - (K~ 7H)s_wave (7T 77 )T 3.11 0.06 0.11 0.16 3.19

Source (ostat)

1 o1m om qy total (@sar)

Fit fraction

DU[S] — K*0,0 1.76 0.04 0.09 0.10 .77
DO[P] — K*0p0 0.27 0.02 0.09 0.12 0.31
DO[D] — K*0p° 1.79 0.06 0.12 0.17 1.80

DY — K~aj (1260), a} (1260)[S] — %7t  1.48 0.10 0.12 0.07 1.45
D° — K~aj (1260), a] (1260)[D] — p®7nt  0.93 0.04 0.09 0.06 0.94
D — K (1270)r+ K, (1270)[S] — K*°zx— 1.01 0.05 0.11 0.16 1.03
DO — K, (1270)n+ K, (1270)[D] — K*97~ 1.12 0.03 0.12 0.13 1.14
DO — K1(1270)~ 7t K (1270) — K—p°  1.58 0.04 0.23 0.06 1.60

DY — (K~ )ant 1.38 0.08 0.09 0.09 1.39
DY — (K*Om)prm 0.93 0.06 0.09 0.16 0.95
DY — (K~ 7)s_wavep” 2.81 0.09 0.11 0.09  2.82
DO — (K= pO)yrt 0.69 0.03 0.09 0.06 0.70
DO — (K*Ox)prt 0.93 0.06 0.09 0.16 0.95
DY — K*0(ntr)g 1.06 0.05 0.09 0.20 1.08
DO — (K*On~)ynt 0.60 0.02 0.00 0.10 0.61
D® — (K~ 7H)s_wavem )am™ 3.10 0.07 0.09 0.06 3.10
DY - K= ((ntn)gnt)a 1.14 0.08 0.10 0.07 1.15
D% — (K~ 71)s_wave(mH 77 )s 1.29 0.12 0.10 0.12 1.30
DO[S] = (K~ 7 H)y(rtn )y 1.73 0.07 0.09 0.07 1.73
D% — (K~ 7H)s_wave(mT 77 )v 2.08 0.12 0.10 0.07 2.09
D° — (K~ 7r+) (7r+7r )s 3.54 0.05 0.10 0.11 3.54
DY = (K~ t)p(ntn)s 0.87 0.07 0.11 0.07 0.88

)
DO — (K—7+)g_ wavc(7r+7r )T 0.99 0.09 0.10 0.08  1.01
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TABLE X. Pull mean and pull width of the pull distributions for the fitted masses and widths of intermediate resonances K*°
and p° from simulated data using either the generated or fitted four-momenta.

Fitted p;

Parameter Generated p;

pull mean pull width  pull mean pull width

M40 0.07 £0.07 1.054+0.05 0.06 +0.07 1.04 + 0.05
Pz«  —0.03+0.06 0.97 +0.04 —0.1740.06 0.97 £+ 0.04
m 0 0.03 £0.07 1.06 +0.05 —0.02 £ 0.07 1.06 £ 0.05

T o 0.10+0.07 1.08 £0.05 0.06 £0.07 1.07 +0.05

P

TABLE XI. Pull mean and pull width of the pull distributions for the different components from simulated data using either
the generated or fitted four-momenta.

. . Generated p; Fitted p;
Fit fraction pull mean pulllhwidth pull mean ;ﬁ;ll width
DY = K*0,0 0.05+0.06 0.92+0.04 0.04+£0.06 0.89=+0.04
DY — K~aj (1260) 0.0240.06 0.914+0.04 0.04+0.06 0.87 =+ 0.04
DY — K (1270)(K*97~)at —0.08 £ 0.06 0.98 £0.04 —0.06 £ 0.06 0.97 & 0.04
DO — K (1270) (K~ p%) 7t 0.014£0.06 0.98+£0.04 0.01+0.06 0.99 % 0.04
DY — K—7tp0 0.14+£0.06 0.9240.04 0.11+£0.06 0.8840.04
DO — K*0ptp— —0.08 £ 0.06 0.96 +0.04 —0.09 & 0.06 0.96 + 0.04
DO —» K—ntntn 0.104+0.06 0.9440.04 0.12+0.06 0.93+0.04

TABLE XII. Pull mean and pull width of the pull distributions for the phases and fit fractions of different amplitudes, from

simulated data using either the generated or fitted four-momenta.

) Generated p; Fitted p;
i pull mean pull width  pull mean pull width
DO[S] — K*0,0 0.11 +£0.06 1.01 +0.05 0.08£0.06 1.004+0.04
DO[P] — K*0p0 0.10 £0.07 1.03+0.05 0.08£0.06 1.024+0.05

DO[D] — K*0p0 0.05+0.07 1.04+0.05

0.01 £0.07 1.03+0.05

DO — K*a;r(1260), ay (1260)[D] — p%7t  —0.07 £0.06 1.02 4 0.05 —0.05 4 0.06 1.02 +0.05
DO — K (1270)n+, K, (1270)[S] — K*O7~ 0.06 £0.07 1.03£0.05 0.06 +0.06 1.0340.05
DO — K, (1270)7+,K; (1270)[D] — K*97~ —0.02 4 0.06 0.98 +0.04 —0.06 £ 0.06 0.97 = 0.04
DY — K (1270)7r+,K;(1270) — K—p° 0.12+£0.06 1.0040.04 0.1140.06 1.00 = 0.04
DO — (K7 )am —0.06 +0.07 1.05 £ 0.05 —0.09 & 0.07 1.05 4 0.05
— (K~ p )p7r+ —0.03 4 0.06 0.96 +0.04 —0.01 +0.06 0.96 & 0.04
— (K~ 7T+)s — —0.07 £ 0.06 0.92 £ 0.04 —0.08 & 0.06 0.92 4+ 0.04
— (K= p)ym —0.05 4 0.06 1.02 4+ 0.05 —0.07 £+ 0.06 1.01 & 0.05
DO (K*O )pw+ 0.00 £0.06 0.99+0.04 0.0040.06 0.99 & 0.04
DY — K*0(xt717)g —0.08 £ 0.07 1.03 £0.05 —0.11 £ 0.07 1.03 & 0.05
DY — (K*On~)yn™t 0.17+£0.06 0.99+0.04 0.15+0.06 0.98 4 0.04
DY — (K~ 7H)s_wavem )ant —0.04 +0.06 0.92+0.04 0.0240.06 0.92 40.04
DO — K~ ((mt7 )gnt)a 0.00 £0.07 1.05+0.05 —0.02 4 0.07 1.04 4+ 0.05
DO — (K~ 7)s_wave (@777 )s 0.10+£0.06 0.9840.04 0.0840.06 0.98+0.04
DO[S] — (K ﬁ)v(wﬂr*)v —0.02 +0.06 0.97 £0.04 —0.03 & 0.06 0.98 4+ 0.04
DO — (K~ 7 H)s _wave (@ T77 )y 0.08 £0.06 0.9340.04 0.0640.06 0.924+0.04
DY — (K—nt)y(nt7n)s —0.17 £ 0.06 0.94 £0.04 —0.17 4 0.06 0.94 +0.04
(K—nH)p(ntn)s 0.01 £0.06 1.0140.05 —0.02 £ 0.06 1.00 & 0.04
(K~ 718 wave(mT 7 ) 0.14+0.07 1.124+0.05 0.1240.07 1.1140.05
. . Generated p; Fitted p;
Fit fraction pull mean pull width pull mean pull width
DU[S] — K*0p0 0.08 £0.06 0.88+0.04 0.07 £0.06 0.87+ 0.04
DO[P] — K*0p0 0.10+£0.06 0.97+0.04 0.10+0.06 0.96 & 0.04
DO[D] — K*0p° —0.1540.07 1.10 £ 0.05 —0.15 £ 0.07 1.10 & 0.05
DO — K~a] (1260), a] (1260)[S] — %7  0.03+0.06 0.9140.04 0.04+0.06 0.90 =+ 0.04
DY — K~a; (1260), a} (1260)[D] — p%7F  0.0240.06 1.00+0.04 0.03+0.06 1.00 +0.04
DY — K| (1270)7, K (1270)[S] — K*97~ —0.14 £0.07 1.02 4 0.05 —0.18 +0.07 1.09 + 0.05

D — K{ (1270)x+, K (1270)[D] — K*%7~ —0.11 4 0.06 0.99 + 0.04

—0.09 +0.06 0.99 £ 0.04

DO — K (1270)7+ K (1270) — K~ p° 0.01 £0.06 0.9840.04 0.0140.06 0.984+0.04
DO — (p OK ) 0.06 £0.06 1.004+0.04 0.04 +0.06 0.99 4 0.04

— (K= p%)prt 0.11+£0.06 0.9540.04 0.0940.06 0.94 4 0.04

— (K~ 7r+)s wave P° 0.0540.07 1.0440.05 0.0540.07 1.04 & 0.05

— (K= p0)ym 0.01 £0.06 0.98+0.04 0.0240.06 0.97 4 0.04
DO (K*O )p7r+ 0.15+0.06 0.9340.04 0.1540.06 0.9340.04
DY — K*0(nt71)g —0.19 4 0.06 1.03 +0.05 —0.18 £ 0.06 1.02 & 0.05
DY — (K*9n~)ynt —0.08 £ 0.06 1.00 £ 0.04 —0.09 +0.06 1.00 & 0.04
DO — (K~ 7H)s_wavem )am™ 0.02+0.06 0.9840.04 0.0240.06 0.97+0.04
DY — K—((ntn)smt)a 0.04 £0.06 1.014+0.05 0.044+0.06 1.00 4 0.04
DO — (K~ mH)s _wave (@ T 77 )s —0.10 4+ 0.06 0.93 +0.04 —0.09 & 0.06 0.93 4 0.04
DO[S] = (K~ 7H)y(rtn )y 0.03+£0.06 1.0240.05 0.0340.06 1.01+0.05
DY — (K~ 7)s_wave (T 77 )y 0.04 £0.06 1.0040.04 0.044+0.06 0.99 4 0.04
D° — (K~ n+) (rtn7)s 0.09+0.07 1.0640.05 0.1140.07 1.04 4 0.05
DY — (K—nH)p(ntn~)s 0.01 £0.07 1.0540.05 0.0040.07 1.03 4 0.05
DO — (K~ 7)s_wave(mT 7)1 0.05+0.06 0.96+0.04 0.0540.06 0.96 4 0.04




them within corresponding uncertainties. The resonance
K (1270) observed by Mark III is also confirmed in this
analysis. The detailed results are listed in Table [(]

About 40% of components comes from the nonreso-
nant four-body (D° — K- 7nTwT7~) and three-body
(D° - K—atp? and D° — K*Ont77) decays. A de-
tailed study con51dering the different orbital angular mo-
mentum is performed, which was not included in the
analyses of Mark IIT and E691. An especially interest-
ing process involving the K7 S-wave is described by an
effective range parametrization.

By using the inclusive branching fraction B(D° —
K-ntata—) = (8.07 4+ 0.23)% taken from the PDG [i]
and the fit fraction for the different components FF(n)
obtained in this analysis, we calculate the exclusive ab-
solute branching fractions for the individual components
with B(n) = B(D* — K-ntntn~) x FF(n). The re-
sults are summarized in Table [XIII and are compared
with the values quoted in PDG. Our results have much
improved precision; they may shed light in a theoret-
ical calculation. The knowledge of D° — K*9p0 and
D° — K~aj (1260) increase our understanding of the de-
cay D° = VV and D — AP, both of which are lacking
in experimental measurements, but have large contribu-
tions to the DY decays. Furthermore, knowledge of the
submodes in the decay D° — K~ ntnt 7~ will improve
the determination of the reconstruction efficiency when
this mode is used to tag the D° as part of other mea-
surements, like measurements of branching fractions, the
strong phase or the angle ~

TABLE XIII. Absolute branching fractions of the seven com-
ponents and the corresponding values in the PDG. Here, we
denote K** — K~ 7t and p° — 7#7x~. The first two un-
certainties are statistical and systematic, respectively. The
third uncertainties are propagated from the uncertainty of

B(D° = K~atrtn™).
Component Branching fraction (%) PDG value (%)
DY — K*0pY 0.99 +0.04 £0.04 £0.03 1.05+0.23
D° — K~ a](1260)(p°nt)  4.41+0.22+0.30 +0.13 3.6 +£0.6
D° — Ky (1270)(K*x~)nt 0.07 £ 0.01 £ 0.02 £ 0.00 0.29 4+ 0.03
D® - K[ (1270) (K~ p°)nT  0.27 £0.02 £ 0.04 £ 0.01 ' ’

1
D° — K- ntp® 0.68 +0.09 £ 0.20 £0.02  0.51 4+ 0.23
DY — K*O0xt g~ 0.57 4 0.03 £ 0.04 £ 0.02  0.99 4 0.23
DY - K ntntn— 1.77 £0.05 4 0.04 +0.05  1.88 +0.26
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VIII. APPENDIX A: AMPLITUDES TESTED

The amplitudes listed below are tested when deter-
mining the nominal fit model, but not used in our final
fit result.

Cascade amplitudes

K1 (1270)(p°K )7+, p° K~ D-wave
K (1400)(K*97 )+, K*%7~ S and D-waves
K**(1410)(K*0 ) +
57 (1430) (K97~ )m ™, K3~ (1430)(K p Yt
*~(1680) (K *On )7T+ K*=(1680) (K~ p°)7*
; (1770)([{*0 )t Ky (1770) (K~ p°) 7t
K~ aj (1320)(o"n ")
K~ +(1300)( )
K~a? (1260) (fo(500)7+)
Quasi-two-body amplitudes
K0 £ (500)
K*9£,(980)

Three-body amplitudes
Kzt 7~ )y S, P- and D-waves
(K=nt)yp® S, P and D-waves
K3°(1430)(7 77 )s

K3°(1430)0°

K*0£5(1270)

(K~ m1)sf2(1270)

K7 )art, K*%7~ S and D-waves
Four-body nonresonance amplitudes
(K—7t)p(ntr™ )y P- and D-waves



)1 P- and D-waves

tr
T~ )v P- and D-waves
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(K= (zmt7n™)g)am™

[1] C. Patrignani et al. (Particle Data Group), Chin. Phys.
C 40, 100001 (2016).
[2] G. Bonvicini et al. (CLEO Collaboration), Phys. Rev. D
89, 072002 (2014).
[3] D. Atwood, I. Dunietz and A. Soni, Phys. Rev. Lett. 78,
3257 (1997).
[4] S. Harnew and J. Rademacker, J. High Energy Phys. 03
(2015) 169.
[5] A. F. Falk, Y. Grossman, Z. Ligeti and A. A. Petrov,
Phys. Rev. D 65, 054034 (2002).
[6] H.Y. Cheng and C. W. Chiang, Phys. Rev. D 81, 114020
(2010).
[7] D. Coffman et al. (Mark III Collaboration), Phys. Rev.
D 45, 2196 (1992).
[8] J. C. Anjos et al. (E691 Collaboration), Phys. Rev. D 46,
1941 (1992).
[9] M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C
37, 123001 (2013).
[10] M. Ablikim et al. (BESIII Collaboration), Phys. Lett. B
753, 629 (2016).
[11] B.S. Zou and D. V. Bugg, Eur. Phys. J. A 16, 537 (2003).
[12] M. Ablikim et al. (BESIII Collaboration), Nucl. Instrum.
Methods Phys. Res., Sect. A 614, 345 (2010).

[13] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. In-
strum. Methods Phys. Res., Sect. A 506, 250 (2003).

[14] S. Jadach, B. F. L. Ward, and Z. Was, Phys. Rev. D 63,
113009 (2001).

[15] E. Barberio and Z. Was, Comput. Phys. Commun. 79,
201 (1994).

[16] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A
462, 152 (2001);
R. G. Ping, Chin. Phys. C 32, 599 (2008).

[17] J. C. Chen et al., Phys. Rev. D 62, 034003 (2000).

[18] J. Insler et al. (CLEO Collaboration), Phys. Rev. D 85,
092016 (2012).

[19] S. U. Chung, Phys. Rev. D 48, 1225 (1993); 57, 431
(1998);
F. von Hippel and C. Quigg, Phys. Rev. D 5, 624 (1972).

[20] G. J. Gounaris and J. J. Sakurai, Phys. Rev. Lett. 21,
244 (1968).

[21] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D
78, 034023 (2008).

[22] D. Aston et al. (LASS Collaboration), Nucl. Phys. B296,
493 (1998).



