Current Location:home > Browse

1. chinaXiv:201708.00301 [pdf]

Clustering and segregation of small vacancy clusters near tungsten (0 0 1) surface

李祥艳
Subjects: Materials Science >> Materials Science (General)

Nanoporous metals have been shown to exhibit radiation-tolerance due to the trapping of the defects by the surface. However, the behavior of vacancy clusters near the surface is not clear which involves the competition between the self-trapping and segregation of small vacancy clusters (Vn) nearby the surface. In this study, we investigated the energetic and kinetic properties of small vacancy clusters near tungsten (0 0 1) surface by combining molecular statics (MS) calculations and object Kinetic Monte Carlo (OKMC) simulations. Results show that vacancies could be clustered with the reduced formation energy and migration energy of the single vacancy around a cluster as the respective energetic and kinetic driving forces. The small cluster has a migration energy barrier comparable to that for the single vacancy; the migration energy barriers for V1–5 and V7 are 1.80, 1.94, 2.17, 2.78, 3.12 and 3.11 eV, respectively. Clusters and become unstable near surface (0 0 1) and tend to dissociate into the surface. At the operation temperature of 1000 K, the single vacancy, V2, V3 and V4 were observed to segregate to the surface within a time of one hour. Meanwhile, larger clusters survived near the surface, which could serve as nucleating center for voids near the surface. Our results suggest that under a low radiation dose, surface (0 0 1) could act as a sink for small vacancy clusters, alleviating defect accumulation in the material under a low radiation dose. We also obtained several empirical expressions for the vacancy cluster formation energy, binding energy, and influence radius as a function of the number of vacancies in the cluster.

submitted time 2017-08-23 Hits1162Downloads594 Comment 0

2. chinaXiv:201708.00300 [pdf]

Surface-structure dependence of healing radiation-damage mechanism in nanoporous tungsten

李祥艳
Subjects: Materials Science >> Metals and Alloys

Under nuclear fusion environments, displacement damage in tungsten (W) is usually caused by neutrons irradiation through producing large quantities of vacancies (Vs) and interstitials (SIAs). These defects not only affect the mechanical properties of W, but also introduce trap sites for implanted hydrogen isotopes and helium. Nano-structured W with high fraction of free surfaces has been developed to mitigate the radiation damage. However, the mechanism of the surface reducing defects accumulation is not well understood. Using multiscale simulation methods, we investigated the interaction of the SIA and V with different surfaces at across length and time scales. We found that, at a typical operation temperature of 1000K, surface (110) preferentially heals radiation damage of W compared with surface (100) and boundary (310). On surface (110), the diffusion barrier for the SIA is only 0.68eV. The annihilation of the SIA-V happens via the coupled motion of the V segregation towards the surface from the bulk and the two dimensional diffusion of the SIA on the surface. Such mechanism makes the surface (110) owe better healing capability. On surface (100), the diffusion energy barrier for the SIA is 2.48eV, higher than the diffusion energy barrier of the V in bulk. The annihilation of the SIA-V occurs via the V segregation and recombination. The SIA was found to migrate one dimensionally along a boundary (310) with a barrier of 0.21eV, leading to a lower healing efficiency in the boundary. This study suggested that the on-surface process plays an important role in healing radiation damage of NP W in addition to surface-enhanced diffusion and annihilation near the surface. A certain surface structure renders nano-structured W more radiation-tolerant.

submitted time 2017-08-23 Hits1662Downloads1064 Comment 0

  [1 Pages/ 2 Totals]