• Precise Measurements of CH Maser Emission and Its Abundance in Translucent Clouds

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present high-sensitivity CH 9 cm ON/OFF observations toward 18 extra-galactic continuum sources that have been detected with OH 18 cm absorption in the Millennium survey with the Arecibo telescope. CH emission was detected toward six of eighteen sources. The excitation temperature of CH has been derived directly through analyzing all detected ON and OFF velocity components. The excitation temperature of CH 3335 MHz transition ranges from $-54.5$ to $-0.4$ K and roughly follows a log-normal distribution peaking within [$-$5, 0] K, which implies overestimation by 20% to more than ten times during calculating CH column density by assuming the conventional value of $-60$ or $-10$ K. Furthermore, the column density of CH would be underestimated by a factor of $1.32\pm 0.03$ when adopting local thermal equilibrium (LTE) assumption instead of using the CH three hyperfine transitions. We found a correlation between the column density of CH and OH following log$N$(CH) = (1.80$\pm$ 0.49) log$N$(OH) $-11.59 \pm 6.87$. The linear correlation between the column density of CH and H$_2$ is consistent with that derived from visible wavelengths studies, confirming that CH is one of the best tracers of H$_2$ component in diffuse molecular gas.

  • An Early Transition to Magnetic Supercriticality in Star Formation

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Magnetic fields play an important role in the evolution of interstellar medium and star formation. As the only direct probe of interstellar field strength, credible Zeeman measurements remain sparse due to the lack of suitable Zeeman probes, particularly for cold, molecular gas. Here we report the detection of a magnetic field of $+$3.8 $\pm$ 0.3 $\mu$G through the HI narrow self-absorption (HINSA) toward L1544, a well-studied prototypical prestellar core in an early transition between starless and protostellar phases characterized by high central number density and low central temperature. A combined analysis of the Zeeman measurements of quasar HI absorption, HI emission, OH emission, and HINSA reveals a coherent magnetic field from the atomic cold neutral medium (CNM) to the molecular envelope. The molecular envelope traced by HINSA is found to be magnetically supercritical, with a field strength comparable to that of the surrounding diffuse, magnetically subcritical CNM despite a large increase in density. The reduction of the magnetic flux relative to the mass, necessary for star formation, thus seems to have already happened during the transition from the diffuse CNM to the molecular gas traced by HINSA, earlier than envisioned in the classical picture where magnetically supercritical cores capable of collapsing into stars form out of magnetically subcritical envelopes.

  • Tiny-scale Structure Discovered toward PSR B1557$-$50

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Optical depth variations in the Galactic neutral interstellar medium (ISM) with spatial scales from hundreds to thousands of astronomical units have been observed through HI absorption against pulsars and continuum sources, while extremely small structures with spatial scales of tens of astronomical units remain largely unexplored. The nature and formation of such tiny-scale atomic structures (TSAS) need to be better understood. We report a tentative detection of TSAS with a signal-to-noise ratio of 3.2 toward PSR B1557$-$50 in the second epoch of two Parkes sessions just 0.36 yr apart, which are the closest-spaced spectral observations toward this pulsar. One absorption component showing marginal variations has been identified. Based on the pulsar's proper motion of 14 mas $\rm yr^{-1}$ and the component's kinematic distance of 3.3 kpc, the corresponding characteristic spatial scale is 17 au, which is among the smallest sizes of known TSAS. Assuming a similar line-of-sight (LOS) depth, the tentative TSAS cloud detected here is overdense and overpressured relative to the cold neutral medium (CNM), and can radiatively cool fast enough to be in thermal equilibrium with the ambient environment. We find that turbulence is not sufficient to confine the overpressured TSAS. We explore the LOS elongation that would be required for the tentative TSAS to be at the canonical CNM pressure, and find that it is $\sim5000$ -- much larger than filaments observed in the ISM. We see some evidence of line width and temperature variations in the CNM components observed at the two epochs, as predicted by models of TSAS-like cloud formation colliding warm neutral medium flows.