• Stellar chromospheric activities revealed from the LAMOST-K2 time-domain survey

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: By using the LAMOST time-domain survey data, we study stellar activities based on the $\rm{H_{\alpha}}$ lines for about 2000 stars in four $K$2 plates. Two indices, $R_{\rm{H\alpha}}^{'}$ and $R_{\rm{H\alpha}}^{+}$, are computed from LAMOST spectra, the former of which is derived by excluding the photospheric contributions to the $\rm{H_{\alpha}}$ lines, while the latter is derived by further subtracting the non-dynamo driven chromospheric emission. Meanwhile, the periodicity and variation amplitudes are computed from \emph{K2} light curves. Both the $R_{\rm{H\alpha}}^{'}$-Ro relation and $R_{\rm{H\alpha}}^{+}$-Ro relation show complicated profiles in the non-saturated decay region. Hot stars show flatter slopes and higher activity level than cool stars, and the behaviour is more notable in the $R_{\rm{H\alpha}}^{+}$-$R_{o}$ relation. This is consistent with recent studies using other activity proxies, including $L_{\rm{x}}/L_{\rm{bol}}$, $R_{\rm{HK}}^{'}$ and amplitudes of optical light curves. % This may suggest different kinds of stars follow different power laws in the decay region. Most of our targets have multiple observations, and some of them exhibit significant variability of ${\rm{H\alpha}}$ emissions, which may cause the large scatters shown in the decay region. We find three targets exhibiting positive correlation in rotational phase, possibly indicating that their optical light curves are dominated by hot faculae rather than cool starspots.

  • Stellar chromospheric activities revealed from the LAMOST-K2 time-domain survey

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: By using the LAMOST time-domain survey data, we study stellar activities based on the $\rm{H_{\alpha}}$ lines for about 2000 stars in four $K$2 plates. Two indices, $R_{\rm{H\alpha}}^{'}$ and $R_{\rm{H\alpha}}^{+}$, are computed from LAMOST spectra, the former of which is derived by excluding the photospheric contributions to the $\rm{H_{\alpha}}$ lines, while the latter is derived by further subtracting the non-dynamo driven chromospheric emission. Meanwhile, the periodicity and variation amplitudes are computed from \emph{K2} light curves. Both the $R_{\rm{H\alpha}}^{'}$-Ro relation and $R_{\rm{H\alpha}}^{+}$-Ro relation show complicated profiles in the non-saturated decay region. Hot stars show flatter slopes and higher activity level than cool stars, and the behaviour is more notable in the $R_{\rm{H\alpha}}^{+}$-$R_{o}$ relation. This is consistent with recent studies using other activity proxies, including $L_{\rm{x}}/L_{\rm{bol}}$, $R_{\rm{HK}}^{'}$ and amplitudes of optical light curves. % This may suggest different kinds of stars follow different power laws in the decay region. Most of our targets have multiple observations, and some of them exhibit significant variability of ${\rm{H\alpha}}$ emissions, which may cause the large scatters shown in the decay region. We find three targets exhibiting positive correlation in rotational phase, possibly indicating that their optical light curves are dominated by hot faculae rather than cool starspots.

  • LAMOST Time-Domain Survey: First Results of four $K$2 plates

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: From Oct. 2019 to Apr. 2020, LAMOST performs a time-domain spectroscopic survey of four $K$2 plates with both low- and med-resolution observations. The low-resolution spectroscopic survey gains 282 exposures ($\approx$46.6 hours) over 25 nights, yielding a total of about 767,000 spectra, and the med-resolution survey takes 177 exposures ($\approx$49.1 hours) over 27 nights, collecting about 478,000 spectra. More than 70%/50% of low-resolution/med-resolution spectra have signal-to-noise ratio higher than 10. We determine stellar parameters (e.g., $T_{\rm eff}$, log$g$, [Fe/H]) and radial velocity (RV) with different methods, including LASP, DD-Payne, and SLAM. In general, these parameter estimations from different methods show good agreement, and the stellar parameter values are consistent with those of APOGEE. We use the $Gaia$ DR2 RV data to calculate a median RV zero point (RVZP) for each spectrograph exposure by exposure, and the RVZP-corrected RVs agree well with the APOGEE data. The stellar evolutionary and spectroscopic masses are estimated based on the stellar parameters, multi-band magnitudes, distances and extinction values. Finally, we construct a binary catalog including about 2700 candidates by analyzing their light curves, fitting the RV data, calculating the binarity parameters from med-resolution spectra, and cross-matching the spatially resolved binary catalog from $Gaia$ EDR3. The LAMOST TD survey is expected to get breakthrough in various scientific topics, such as binary system, stellar activity, and stellar pulsation, etc.