• Cross-correlation of DES Y3 lensing and ACT/${\it Planck}$ thermal Sunyaev Zel'dovich Effect II: Modeling and constraints on halo pressure profiles

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Hot, ionized gas leaves an imprint on the cosmic microwave background via the thermal Sunyaev Zel'dovich (tSZ) effect. The cross-correlation of gravitational lensing (which traces the projected mass) with the tSZ effect (which traces the projected gas pressure) is a powerful probe of the thermal state of ionized baryons throughout the Universe, and is sensitive to effects such as baryonic feedback. In a companion paper (Gatti et al. 2021), we present tomographic measurements and validation tests of the cross-correlation between galaxy shear measurements from the first three years of observations of the Dark Energy Survey, and tSZ measurements from a combination of Atacama Cosmology Telescope and ${\it Planck}$ observations. In this work, we use the same measurements to constrain models for the pressure profiles of halos across a wide range of halo mass and redshift. We find evidence for reduced pressure in low mass halos, consistent with predictions for the effects of feedback from active galactic nuclei. We infer the hydrostatic mass bias ($B \equiv M_{500c}/M_{\rm SZ}$) from our measurements, finding $B = 1.8\pm0.1$ when adopting the ${\it Planck}$-preferred cosmological parameters. We additionally find that our measurements are consistent with a non-zero redshift evolution of $B$, with the correct sign and sufficient magnitude to explain the mass bias necessary to reconcile cluster count measurements with the ${\it Planck}$-preferred cosmology. Our analysis introduces a model for the impact of intrinsic alignments (IA) of galaxy shapes on the shear-tSZ correlation. We show that IA can have a significant impact on these correlations at current noise levels.

  • Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and galaxy-galaxy lensing using the MagLim lens sample

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Two of the most sensitive probes of the large scale structure of the universe are the clustering of galaxies and the tangential shear of background galaxy shapes produced by those foreground galaxies, so-called galaxy-galaxy lensing. Combining the measurements of these two two-point functions leads to cosmological constraints that are independent of the galaxy bias factor. The optimal choice of foreground, or lens, galaxies is governed by the joint, but conflicting requirements to obtain accurate redshift information and large statistics. We present cosmological results from the full 5000 sq. deg. of the Dark Energy Survey first three years of observations (Y3) combining those two-point functions, using for the first time a magnitude-limited lens sample (MagLim) of 11 million galaxies especially selected to optimize such combination, and 100 million background shapes. We consider two cosmological models, flat $\Lambda$CDM and $w$CDM. In $\Lambda$CDM we obtain for the matter density $\Omega_m = 0.320^{+0.041}_{-0.034}$ and for the clustering amplitude $S_8 = 0.778^{+0.037}_{-0.031}$, at 68% C.L. The latter is only 1$\sigma$ smaller than the prediction in this model informed by measurements of the cosmic microwave background by the Planck satellite. In $w$CDM we find $\Omega_m = 0.32^{+0.044}_{-0.046}$, $S_8=0.777^{+0.049}_{-0.051}$, and dark energy equation of state $w=-1.031^{+0.218}_{-0.379}$. We find that including smaller scales while marginalizing over non-linear galaxy bias improves the constraining power in the $\Omega_m-S_8$ plane by $31$% and in the $\Omega_m-w$ plane by $41$% while yielding consistent cosmological parameters from those in the linear bias case. These results are combined with those from cosmic shear in a companion paper to present full DES-Y3 constraints from the three two-point functions (3x2pt).

  • Dark Energy Survey Year 3 Results: Constraints on cosmological parameters and galaxy bias models from galaxy clustering and galaxy-galaxy lensing using the redMaGiC sample

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We constrain cosmological and galaxy-bias parameters using the combination of galaxy clustering and galaxy-galaxy lensing measurements from the Dark Energy Survey Year-3 data. We describe our modeling framework, and choice of scales analyzed, validating their robustness to theoretical uncertainties in small-scale clustering by analyzing simulated data. Using a linear galaxy bias model and redMaGiC galaxy sample, we obtain constraints on the matter density to be $\Omega_{\rm m} = 0.325^{+0.033}_{-0.034}$. We also implement a non-linear galaxy bias model to probe smaller scales that includes parameterization based on hybrid perturbation theory and find that it leads to a 17% gain in cosmological constraining power. We perform robustness tests of our methodology pipeline and demonstrate the stability of the constraints to changes in the theoretical model. Using the redMaGiC galaxy sample as foreground lens galaxies, we find the galaxy clustering and galaxy-galaxy lensing measurements to exhibit significant signals akin to de-correlation between galaxies and mass on large scales, which is not expected in any current models. This likely systematic measurement error biases our constraints on galaxy bias and the $S_8$ parameter. We find that a scale-, redshift- and sky-area-independent phenomenological de-correlation parameter can effectively capture the impact of this systematic error. We trace the source of this de-correlation to a color-dependent photometric issue and minimize its impact on our result by changing the selection criteria of redMaGiC galaxies. Using this new sample, our constraints on the $S_8$ parameter are consistent with previous studies, and we find a small shift in the $\Omega_{\rm m}$ constraints compared to the fiducial redMaGiC sample. We constrain the mean host halo mass of the redMaGiC galaxies in this new sample to be approximately $1.6 \times 10^{13} M_{\odot}/h$.