• Forward Modeling of Simulated Transverse Oscillations in Coronal Loops and the Influence of Background Emission

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We simulate transverse oscillations in radiatively cooling coronal loops and forward-model their spectroscopic and imaging signatures, paying attention to the influence of background emission. The transverse oscillations are driven at one footpoint by a periodic velocity driver. A standing kink wave is subsequently formed and the loop cross-section is deformed due to the Kelvin-Helmholtz instability, resulting in energy dissipation and heating at small scales. Besides the transverse motions, a long-period longitudinal flow is also generated due to the ponderomotive force induced slow wave. We then transform the simulated straight loop to a semi-torus loop and forward-model their spectrometer and imaging emissions, mimicking observations of Hinode/EIS and SDO/AIA. We find that the oscillation amplitudes of the intensity are different at different slit positions, but are roughly the same in different spectral lines or channels. X-t diagrams of both the Doppler velocity and the Doppler width show periodic signals. We also find that the background emission dramatically decreases the Doppler velocity, making the estimated kinetic energy two orders of magnitude smaller than the real value. Our results show that background subtraction can help recover the real oscillation velocity. These results are helpful for further understanding transverse oscillations in coronal loops and their observational signatures. However, they cast doubt on the spectroscopically estimated energy content of transverse waves using the Doppler velocity.

  • Prospects and challenges of numerical modelling of the Sun at millimetre wavelengths

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Atacama Large Millimeter/submillimeter Array (ALMA) offers new diagnostic possibilities that complement other commonly used diagnostics for the study of our Sun. In particular, ALMA's ability to serve as an essentially linear thermometer of the chromospheric gas at unprecedented spatial resolution at millimetre wavelengths and future polarisation measurements have great diagnostic potential. Solar ALMA observations are therefore expected to contribute significantly to answering long-standing questions about the structure, dynamics and energy balance of the outer layers of the solar atmosphere. In this regard, current and future ALMA data are also important for constraining and further developing numerical models of the solar atmosphere, which in turn are often vital for the interpretation of observations. The latter is particularly important given the Sun's highly intermittent and dynamic nature that involves a plethora of processes occurring over extended ranges in spatial and temporal scales. Realistic forward modelling of the Sun therefore requires time-dependent three-dimensional radiation magnetohydrodynamics that account for non-equilibrium effects and, typically as a separate step, detailed radiative transfer calculations, resulting in synthetic observables that can be compared to observations. Such artificial observations sometimes also account for instrumental and seeing effects, which, in addition to aiding the interpretation of observations, provide instructive tools for designing and optimising ALMA's solar observing modes. In the other direction, ALMA data in combination with other simultaneous observations enables the reconstruction of the solar atmospheric structure via data inversion techniques. This article highlights central aspects of the impact of ALMA for numerical modelling for the Sun, their potential and challenges, together with selected examples.