• High redshift JWST predictions from IllustrisTNG: III. Infrared luminosity functions, obscured star formation and dust temperature of high-redshift galaxies

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We post-process galaxies in the IllustrisTNG simulations with SKIRT radiative transfer calculations to make predictions for the rest-frame near-infrared (NIR) and far-infrared (FIR) properties of galaxies at $z\geq 4$. The rest-frame $K$- and $z$-band galaxy luminosity functions from TNG are overall consistent with observations, despite a $\sim 0.5\,\mathrm{dex}$ underprediction at $z=4$ for $M_{\rm K}\lesssim -25$ and $M_{\rm z}\lesssim -24$. Predictions for the JWST MIRI observed galaxy luminosity functions and number counts are given. Based on theoretical estimations, we show that the next-generation survey conducted by JWST can detect 500 (30) galaxies in F1000W in a survey area of $500\,{\rm arcmin}^{2}$ at $z=6$ ($z=8$). As opposed to the consistency in the UV, optical and NIR, we find that TNG, combined with our dust modelling choices, significantly underpredicts the abundance of most dust-obscured and thus most luminous FIR galaxies. As a result, the obscured cosmic star formation rate density (SFRD) and the SFRD contributed by optical/NIR dark objects are underpredicted. The discrepancies discovered here could provide new constraints on the sub-grid feedback models, or the dust contents, of simulations. Meanwhile, although the TNG predicted dust temperature and its relations with IR luminosity and redshift are qualitatively consistent with observations, the peak dust temperature of $z\geq 6$ galaxies are overestimated by about $20\,{\rm K}$. This could be related to the limited mass resolution of our simulations to fully resolve the porosity of the interstellar medium (or specifically its dust content) at these redshifts.

  • Formation and evolution of young massive clusters in galaxy mergers: the SMUGGLE view

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Galaxy mergers are known to host abundant young massive cluster (YMC) populations, whose formation mechanism is still not well-understood. Here, we present a high-resolution galaxy merger simulation with explicit star formation and stellar feedback prescriptions to investigate how mergers affect the properties of the interstellar medium and YMCs. Compared with a controlled simulation of an isolated galaxy, the mass fraction of dense and high-pressure gas is much higher in mergers. Consequently, the mass function of both molecular clouds and YMCs becomes shallower and extends to higher masses. Moreover, cluster formation efficiency is significantly enhanced and correlates positively with the star formation rate surface density and gas pressure. We track the orbits of YMCs and investigate the time evolution of tidal fields during the course of the merger. At an early stage of the merger, the tidal field strength correlates positively with YMC mass, $\lambda_{\rm tid}\propto M^{0.71}$, which systematically affects the shape of the mass function and age distribution of the YMCs. At later times, most YMCs closely follow the orbits of their host galaxies, gradually sinking into the center of the merger remnant due to dynamical friction, and are quickly dissolved via efficient tidal disruption. Interestingly, YMCs formed during the first passage, mostly in tidal tails and bridges, are distributed over a wide range of galactocentric radii, greatly increasing their survivability because of the much weaker tidal field in the outskirts of the merger system. These YMCs are promising candidates for globular clusters that survive to the present day.

  • A Framework for Modeling Polycyclic Aromatic Hydrocarbon Emission in Galaxy Evolution Simulations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present a new methodology for simulating mid-infrared emission from polycyclic aromatic hydrocarbons (PAHs) in galaxy evolution simulations. To do this, we combine theoretical models of PAH emission features as they respond to varying interstellar radiation fields, grain size distributions, and ionization states with a new on-the-fly model for dust evolution in hydrodynamic galaxy simulations. We apply these models to 3 idealized arepo galaxy evolution simulations within the smuggle physics framework. We use these simulations to develop numerical experiments investigating the buildup of PAH masses and luminosities in galaxies in idealized analogs of the Milky Way, a dwarf galaxy, and starburst disk. Our main results follow. Galaxies with high specific star formation rates have increased feedback energy per unit mass, and are able to efficiently shatter dust grains, driving up the fraction of ultra small grains. At the same time, in our model large radiation fields per unit gas density convert aliphatic grains into aromatics. The fraction of dust grains in the form of PAHs (q_PAH) can be understood as a consequence of these processes, and in our model PAHs form primarily from interstellar processing (shattering) of larger grains rather than from the growth of smaller grains. We find that the hardness of the radiation field plays a larger role than variations in the grain size distribution in setting the total integrated PAH luminosities, though cosmological simulations are necessary to fully investigate the complex interplay of processes that drive PAH band luminosities in galaxies. Finally, we highlight feature PAH strength variations, cautioning against the usage of emission templates with constant feature strength ratios.

  • Modeling globular clusters in the TNG50 simulation: predictions from dwarfs to giants

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present a post-processing catalog of globular clusters (GCs) for the $39$ most massive groups and clusters in the TNG50 simulation of the IlllustrisTNG project (virial masses $M_{200} =[5\times 10^{12} \rm - 2 \times 10^{14}$] M$_{\odot}$). We tag GC particles to all galaxies with stellar mass $M_* \geq 5\times10^6$ M$_{\odot}$, and we calibrate their masses to reproduce the observed power-law relation between GC mass and halo mass for galaxies with $M_{200} \geq 10^{11}$ M$_{\odot}$ (corresponding to $M_* \sim 10^9$ $M_{\odot}$). Here we explore whether an extrapolation of this $M_{\rm GC}$-$M_{200}$ relation to lower-mass dwarfs is consistent with current observations. We find a good agreement between our predicted number and specific frequency of GCs in dwarfs with $\rm M_*=[5 \times 10^6 \rm - 10^9]$ M$_{\odot}$ and observations. Moreover, we predict a steep decline in the GC occupation fraction for dwarfs with $M_*<10^9$ M$_{\odot}$ which agrees well with current observational constraints. This declining occupation fraction is due to a combination of tidal stripping in all dwarfs plus a stochastic sampling of the GC mass function for dwarfs with $M_* < 10^{7.5}$ M$_{\odot}$. Our simulations also reproduce available constraints on the abundance of intra-cluster GCs in Virgo and Centaurus A. These successes provide support to the hypothesis that the $M_{\rm GC}$-$M_{200}$ relation holds, albeit with more scatter, all the way down to the regime of classical dwarf spheroidals in these environments. Our GC catalogs are publicly available as part of the IllustrisTNG data release.

  • Gas-phase metallicity break radii of star-forming galaxies in IllustrisTNG

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present radial gas-phase metallicity profiles, gradients, and break radii at redshift $z = 0 - 3$ from the TNG50-1 star-forming galaxy population. These metallicity profiles are characterized by an emphasis on identifying the steep inner gradient and flat outer gradient. From this, the break radius, $r_{\rm Break}$, is defined as the region where the transition occurs. We observe the break radius having a positive trend with mass that weakens with redshift. When normalized by the stellar half-mass radius, the break radius has a weaker relation with both mass and redshift. To test if our results are dependent on the resolution or adopted physics of TNG50-1, the same analysis is performed in TNG50-2 and Illustris-1. We find general agreement between each of the simulations in their qualitative trends; however, the adopted physics between TNG and Illustris differ and therefore the breaks, normalized by galaxy size, deviate by a factor of $\sim$2. In order to understand where the break comes from, we define two relevant time-scales: an enrichment time-scale and a radial gas mixing time-scale. We find that $r_{\rm Break}$ occurs where the gas mixing time-scale is $\sim$10 times as long as the enrichment time-scale in all three simulation runs, with some weak mass and redshift dependence. This implies that galactic disks can be thought of in two-parts: a star-forming inner disk with a steep gradient and a mixing-dominated outer disk with a flat gradient, with the break radius marking the region of transition between them.