• Birth places of extreme ultraviolet waves driven by impingement of solar jets upon coronal loops

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Solar extreme ultraviolet (EUV) waves are large-scale propagating disturbances in the corona. It is generally believed that the vital key for the formation of EUV waves is the rapid expansion of the loops that overlie erupting cores in solar eruptions, such as coronal mass ejections (CMEs) and solar jets. However, the details of the interaction between the erupting cores and overlying loops are not clear, because that the overlying loops are always instantly opened after the energetic eruptions. Here, we present three typical jet-driven EUV waves without CME to study the interaction between the jets and the overlying loops that remained closed during the events. All three jets emanated from magnetic flux cancelation sites in source regions. Interestingly, after the interactions between jets and overlying loops, three EUV waves respectively formed ahead of the top, the near end (close to the jet source), and the far (another) end of the overlying loops. According to the magnetic field distribution of the loops extrapolated from Potential Field Source Surface method, it is confirmed that the birth places of three jet-driven EUV waves were around the weakest magnetic field strength part of the overlying loops. We suggest that the jet-driven EUV waves preferentially occur at the weakest part of the overlying loops, and the location can be subject to the magnetic field intensity around the ends of the loops.

  • Solar Cycle Dependence of ICME Composition

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Coronal mass ejections (CMEs) are one of the most energetic explosions in the solar atmosphere, and their occurrence rates exhibit obvious solar cycle dependence with more events taking place around solar maximum. Composition of interplanetary CMEs (ICMEs), referring to the charge states and elemental abundances of ions, opens an important avenue to investigate CMEs. In this paper, we conduct a statistical study on the charge states of five elements (Mg, Fe, Si, C, and O) and the relative abundances of six elements (Mg/O, Fe/O, Si/O, C/O, Ne/O, and He/O) within ICMEs from 1998 to 2011, and find that all the ICME compositions possess the solar cycle dependence. All of the ionic charge states and most of the relative elemental abundances are positively correlated with sunspot numbers (SSNs), and only the C/O ratios are inversely correlated with the SSNs. The compositions (except the C/O) increase with the SSNs during the ascending phase (1998--2000 and 2009--2011) and remain elevated during solar maximum and descending phase (2000--2005) compared to solar minimum (2007--2009). The charge states of low-FIP (first ionization potential) elements (Mg, Fe, and Si) and their relative abundances are correlated well, while no clear correlation is observed between the C$^{6+}$/C$^{5+}$ or C$^{6+}$/C$^{4+}$ and C/O. Most interestingly, we find that the Ne/O ratios of ICMEs and slow solar wind have the opposite solar cycle dependence.

  • On the Nature of the Three-part Structure of Solar Coronal Mass Ejections

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Coronal mass ejections (CMEs) result from eruptions of magnetic flux ropes (MFRs) and can possess a three-part structure in white-light coronagraphs, including a bright front, dark cavity and bright core. In the traditional opinion, the bright front forms due to the plasma pileup along the MFR border, the cavity represents the cross section of the MFR, and the bright core corresponds to the erupted prominence. However, this explanation on the nature of the three-part structure is being challenged. In this paper, we report an intriguing event occurred on 2014 June 14 that was recorded by multiple space- and ground-based instruments seamlessly, clearly showing that the CME front originates from the plasma pileup along the magnetic arcades overlying the MFR, and the core corresponds to a hot-channel MFR. Thus the dark cavity is not an MFR, instead it is a low-density zone between the CME front and a trailing MFR. These observations are consistent with a new explanation on the CME structure. If the new explanation is correct, most (if not all) CMEs should exhibit the three-part appearance in their early eruption stage. To examine this prediction, we make a survey study of all CMEs in 2011 and find that all limb events have the three-part feature in the low corona, regardless of their appearances in the high corona. Our studies suggest that the three-part structure is the intrinsic structure of CMEs, which has fundamental importance for understanding CMEs.

  • On the Nature of the Three-part Structure of Solar Coronal Mass Ejections

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Coronal mass ejections (CMEs) result from eruptions of magnetic flux ropes (MFRs) and can possess a three-part structure in white-light coronagraphs, including a bright front, dark cavity and bright core. In the traditional opinion, the bright front forms due to the plasma pileup along the MFR border, the cavity represents the cross section of the MFR, and the bright core corresponds to the erupted prominence. However, this explanation on the nature of the three-part structure is being challenged. In this paper, we report an intriguing event occurred on 2014 June 14 that was recorded by multiple space- and ground-based instruments seamlessly, clearly showing that the CME front originates from the plasma pileup along the magnetic arcades overlying the MFR, and the core corresponds to a hot-channel MFR. Thus the dark cavity is not an MFR, instead it is a low-density zone between the CME front and a trailing MFR. These observations are consistent with a new explanation on the CME structure. If the new explanation is correct, most (if not all) CMEs should exhibit the three-part appearance in their early eruption stage. To examine this prediction, we make a survey study of all CMEs in 2011 and find that all limb events have the three-part feature in the low corona, regardless of their appearances in the high corona. Our studies suggest that the three-part structure is the intrinsic structure of CMEs, which has fundamental importance for understanding CMEs.

  • Formation and Immediate Deformation of a Small Filament Through Intermittent Magnetic Interactions

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: It is generally believed that filament formation involves a process of the accumulation of magnetic energy. However, in this paper we discuss the idea that filaments will not erupt and will only deform when the stored magnetic energy is released gradually. Combining high-quality observations from Solar Dynamics Observatory and other instruments, we present the formation and immediate deformation of a small filament (F1) in the active region (AR) 12760 on 28-30 April 2020. Before the filament formation, three successive dipoles quickly emerged with separation motions in the center of AR 12760. Due to the magnetic interaction between magnetic dipoles and pre-existing positive polarities, coronal brightenings consequently appeared in the overlying atmosphere. Subsequently, because of the continuous cancellation of magnetic flux that happened around the adjacent ends of F1 and another nearby filament (F2), the magnetic reconections occurred intermittently occurred between F1 and F2. Finally, F1 lessened in the shear, and F2 became shorter. All the results show that the formation of F1 was closely associated with intermittent interactions between the sequence of emerging dipoles and pre-existing magnetic polarities, and the immediate deformation of F1 was intimately related to intermittent interactions between F1 and F2. We also suggest that the intermittent magnetic interactions driven by the continuous magnetic activities (magnetic-flux emergence, cancellation, and convergence) play an important role in the formation and deformation of filaments.

  • Composition Comparison between ICMEs from Active Regions and Quiet-Sun Regions

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The composition, including the ionic charge states and elemental abundances of heavy elements, within interplanetary coronal mass ejections (ICMEs) has tight correlations with their source regions and eruption processes. This can help analyze the eruption mechanisms and plasma origins of CMEs, and deepen our understanding of energetic solar activities. The active regions and quiet-Sun regions have different physical properties, thus from a statistical point of view, ICMEs originating from the two types of regions should exhibit different compositional characteristics. To demonstrate the differences comprehensively, we conduct survey studies on the ionic charge states of five elements (Mg, Fe, Si, C, and O) and the relative abundances of six elements (Mg/O, Fe/O, Si/O, C/O, Ne/O, and He/O) within ICMEs from 1998 February to 2011 August through the data of advanced composition explorer. The results show that ICMEs from active regions have higher ionic charge states and relative abundances than those from quiet-Sun regions. For the active-region ICMEs, we further analyze the relations between their composition and flare class, and find a positive relationship between them, i.e., the higher classes of the associated flares, the larger means of ionic charge states and relative abundances (except the C/O) within ICMEs. As more (less) fractions of ICMEs originate from active regions around solar maximum (minimum), and active-region ICMEs usually are associated with higher-class flares, our studies might answer why ICME composition measured near 1 au exhibits the solar cycle dependence.

  • Composition Comparison between ICMEs from Active Regions and Quiet-Sun Regions

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The composition, including the ionic charge states and elemental abundances of heavy elements, within interplanetary coronal mass ejections (ICMEs) has tight correlations with their source regions and eruption processes. This can help analyze the eruption mechanisms and plasma origins of CMEs, and deepen our understanding of energetic solar activities. The active regions and quiet-Sun regions have different physical properties, thus from a statistical point of view, ICMEs originating from the two types of regions should exhibit different compositional characteristics. To demonstrate the differences comprehensively, we conduct survey studies on the ionic charge states of five elements (Mg, Fe, Si, C, and O) and the relative abundances of six elements (Mg/O, Fe/O, Si/O, C/O, Ne/O, and He/O) within ICMEs from 1998 February to 2011 August through the data of advanced composition explorer. The results show that ICMEs from active regions have higher ionic charge states and relative abundances than those from quiet-Sun regions. For the active-region ICMEs, we further analyze the relations between their composition and flare class, and find a positive relationship between them, i.e., the higher classes of the associated flares, the larger means of ionic charge states and relative abundances (except the C/O) within ICMEs. As more (less) fractions of ICMEs originate from active regions around solar maximum (minimum), and active-region ICMEs usually are associated with higher-class flares, our studies might answer why ICME composition measured near 1 au exhibits the solar cycle dependence.

  • Compound eruptions of twin flux ropes in a solar active region

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Compound eruptions represent that multiple closely spaced magnetic structures erupt consecutively within a short interval, and then lead to a single flare and a single CME. However, it is still subtle for the links between multiple eruptions and the associated single flare or/and single CME. In this Letter, we report the compound eruptions of twin close flux ropes (FR1 and FR2) within a few minutes that resulted in a flare with a single soft X-ray peak and a CME with two cores. The successive groups of expanding loops and double peaks of intensity flux in AIA cool wavelengths indicate two episodes of internal magnetic reconnections during the compound eruptions. Following the eruption of FR2, the erupting FR1 was accelerated, and then the expanding loops overlying FR2 were deflected. Moreover, the eruption of FR2 likely involved the external magnetic reconnection between the bottom of the overlying stretching field lines and the rebounding loops that were previously pushed by the eruption of FR1, which was evidenced by a pair of groups of newly-formed loops. All results suggest that the compound eruptions involved both internal and external magnetic reconnections, and two erupting structures of twin FRs interacted at the initial stage. We propose that two episodes of internal magnetic reconnections were likely united within a few minutes to form the continuous impulsive phase of the single peaked flare, and two separated cores of the CME was possibly because that the latter core was too slow to merge with the former one.

  • The Inhomogeneity of Composition along the Magnetic Cloud Axis

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: It is generally accepted that CMEs result from eruptions of magnetic flux ropes, which are dubbed as magnetic clouds in interplanetary space. The composition (including the ionic charge states and elemental abundances) is determined prior to and/or during CME eruptions in the solar atmosphere, and does not alter during magnetic cloud propagation to 1 AU and beyond. It has been known that the composition is not uniform within a cross section perpendicular to magnetic cloud axis, and the distribution of ionic charge states within a cross section provides us an important clue to investigate the formation and eruption processes of flux ropes due to the freeze-in effect. The flux rope is a three dimensional magnetic structure intrinsically, and it remains unclear whether the composition is uniform along the flux rope axis as most magnetic clouds are only detected by one spacecraft. In this paper we report a magnetic cloud that was observed by ACE near 1 AU on 1998 March 4--6 and Ulysses near 5.4 AU on March 24--28 sequentially. At these times, both spacecraft were located around the ecliptic plane, and the latitudinal and longitudinal separations between them were $\sim$2.2$^{\circ}$ and $\sim$5.5$^{\circ}$, respectively. It provides us an excellent opportunity to explore the axial inhomogeneity of flux rope composition, as both spacecraft almost intersected the cloud center at different sites along its axis. Our study shows that the average values of ionic charge states exhibit significant difference along the axis for carbon, and the differences are relatively slight but still obvious for charge states of oxygen and iron, as well as the elemental abundances of iron and helium. Besides the means, the composition profiles within the cloud measured by both spacecraft also exhibit some discrepancies. We conclude that the inhomogeneity of composition exists along the cloud axis.

  • A Confined Two-peaked Solar Flare Observed by EAST and SDO

    分类: 天文学 >> 天文学 提交时间: 2024-05-10 合作期刊: 《Research in Astronomy and Astrophysics》

    摘要: The solar flare is one of the most violent explosions, and can disturb the near-Earth space weather. Except for commonly single-peaked solar flares in soft X-ray, some special flares show intriguing a two-peak feature that is deserved much more attentions. Here, we reported a confined two-peaked solar flare and analyzed the associated eruptions using high-quality observations from Educational Adaptive-optics Solar Telescope and Solar Dynamics Observatory. Before the flare, a magnetic flux rope (MFR) formed through partially tether-cutting reconnection between two sheared arches. The flare occurred after the MFR eruption that was confined by the overlying strong field. Interestingly, a small underlying filament immediately erupted, which was possibly destabilized by the flare ribbon. The successive eruptions were confirmed by the analysis of the emission measure and the reconnection fluxes. Therefore, we suggest that the two peaks of the confined solar flare are corresponding to two episodes of magnetic reconnection during the successive eruptions of the MFR and the underlying filament.

  • The deformation of an erupting magnetic flux rope in a confined solar flare

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Magnetic flux ropes (MFRs), sets of coherently twisted magnetic field lines, are believed as core structures of various solar eruptions. Their evolution plays an important role to understand the physical mechanisms of solar eruptions, and can shed light on adverse space weather near the Earth. However, the erupting MFRs are occasionally prevented by strong overlying magnetic fields, and the MFR evolution during the descending phase in the confined cases is lack of attention. Here, we present the deformation of an erupting MFR accompanied by a confined double-peaked solar flare. The first peak corresponded to the MFR eruption in a standard flare model, and the second peak was closely associated with the flashings of an underlying sheared arcade (SA), the reversal slipping motion of the L-shaped flare ribbon, the falling of the MFR, and the shifting of top of filament threads. All results suggest that the confined MFR eruption involved in two-step magnetic reconnection presenting two distinct episodes of energy release in the flare impulsive phase, and the latter magnetic reconnection between the confined MFR and the underlying SA caused the deformation of MFR.

  • The deformation of an erupting magnetic flux rope in a confined solar flare

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Magnetic flux ropes (MFRs), sets of coherently twisted magnetic field lines, are believed as core structures of various solar eruptions. Their evolution plays an important role to understand the physical mechanisms of solar eruptions, and can shed light on adverse space weather near the Earth. However, the erupting MFRs are occasionally prevented by strong overlying magnetic fields, and the MFR evolution during the descending phase in the confined cases is lack of attention. Here, we present the deformation of an erupting MFR accompanied by a confined double-peaked solar flare. The first peak corresponded to the MFR eruption in a standard flare model, and the second peak was closely associated with the flashings of an underlying sheared arcade (SA), the reversal slipping motion of the L-shaped flare ribbon, the falling of the MFR, and the shifting of top of filament threads. All results suggest that the confined MFR eruption involved in two-step magnetic reconnection presenting two distinct episodes of energy release in the flare impulsive phase, and the latter magnetic reconnection between the confined MFR and the underlying SA caused the deformation of MFR.

  • Three-dimensional Propagation of the Global EUV Wave associated with a solar eruption on 2021 October 28

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present a case study for the global extreme ultraviolet (EUV) wave and its chromospheric counterpart `Moreton-Ramsey wave' associated with the second X-class flare in Solar Cycle 25 and a halo coronal mass ejection (CME). The EUV wave was observed in the H$\alpha$ and EUV passbands with different characteristic temperatures. In the 171 {\AA} and 193/195 {\AA} images, the wave propagates circularly with an initial velocity of 600-720 km s$^{-1}$ and a deceleration of 110-320 m s$^{-2}$. The local coronal plasma is heated from log(T/K)=5.9 to log(T/K)=6.2 during the passage of the wavefront. The H$\alpha$ and 304 {\AA} images also reveal signatures of wave propagation with a velocity of 310-540 km s$^{-1}$. With multi-wavelength and dual-perspective observations, we found that the wavefront likely propagates forwardly inclined to the solar surface with a tilt angle of ~53.2$^{\circ}$. Our results suggest that this EUV wave is a fast-mode magnetohydrodynamic wave or shock driven by the expansion of the associated CME, whose wavefront is likely a dome-shaped structure that could impact the upper chromosphere, transition region and corona.