• Baryogenesis, Primordial Black Holes and MHz-GHz Gravitational Waves

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Gravitational waves (GWs) in the MHz - GHz frequency range are motivated by a host of early Universe phenomena such as oscillons, preheating, and cosmic strings. We point out that baryogenesis too serves as a motivation to probe GWs in this frequency range. The connection is through primordial black holes (PBHs): on the one hand, PBHs induce baryogenesis by Hawking evaporating into a species that has baryon number and $CP$ violating decays; on the other, PBHs induce GWs through second order effects when the scalar fluctuations responsible for their formation re-enter the horizon. We describe the interplay of the parameters responsible for successful baryogenesis on the plane of the strain and frequency of the induced GWs, being careful to delineate regimes where PBH domination or washout effects occur. We provide semi-analytic scalings of the GW strain with the baryon number to entropy ratio and other parameters important for baryogenesis. Along the way, we sketch a solution to the dark matter-baryogenesis coincidence problem with two populations of PBHs, which leads to a double-peaked GW signal. Our results underscore the importance of probing the ultra high frequency GW frontier.

  • Correlating Gravitational Wave and Gamma-ray Signals from Primordial Black Holes

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Asteroid-mass primordial black holes (PBH) can explain the observed dark matter abundance while being consistent with the current indirect detection constraints. These PBH can produce gamma-ray signals from Hawking radiation that are within the sensitivity of future measurements by the AMEGO and e-ASTROGAM experiments. PBH which give rise to such observable gamma-ray signals have a cosmic origin from large primordial curvature fluctuations. There must then be a companion, stochastic gravitational wave (GW) background produced by the same curvature fluctuations. We demonstrate that the resulting GW signals will be well within the sensitivity of future detectors such as LISA, DECIGO, BBO, and the Einstein Telescope. The multi-messenger signal from the observed gamma-rays and GW will allow a precise measurement of the primordial curvature perturbation that produces the PBH. Indeed, we argue that the resulting correlation between the two types of observations can provide a smoking-gun signal of PBH.

  • Detecting Axion-Like Particles with Primordial Black Holes

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Future gamma-ray experiments, such as the e-ASTROGAM and AMEGO telescopes, can detect the Hawking radiation of photons from primordial black holes (PBHs) if they make up a fraction or all of dark matter. PBHs can analogously also Hawking radiate new particles, which is especially interesting if these particles are mostly secluded from the Standard Model (SM) sector, since they might therefore be less accessible otherwise. A well-motivated example of this type is axion-like particles (ALPs) with a tiny coupling to photons. We assume that the ALPs produced by PBHs decay into photons well before reaching the earth, so these will augment the photons directly radiated by the PBHs. Remarkably, we find that the peaks in the energy distributions of ALPs produced from PBHs are different than the corresponding ones for Hawking radiated photons due to the spin-dependent greybody factor. Therefore, we demonstrate that this process will in fact distinctively modify the PBHs' gamma-ray spectrum relative to the SM prediction. We use monochromatic asteroid-mass PBHs as an example to show that e-ASTROGAM can observe the PBH-produced ALP gamma-ray signal (for masses up to ~60 MeV) and further distinguish it from Hawking radiation without ALPs. By measuring the gamma-ray signals, e-ASTROGAM can thereby probe yet unexplored parameters in the ALP mass and photon coupling.