• Chaotic Time-Delay Signature Suppression and Entropy Growth Enhancement Using Frequency-Band Extractor

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: By frequency-band extracting, we experimentally and theoretically investigate time-delay signature (TDS) suppression and entropy growth enhancement of a chaotic optical-feedback semiconductor laser under different injection currents and feedback strengths. The TDS and entropy growth are quantified by the peak value of autocorrelation function and the difference of permutation entropy at the feedback delay time. At the optimal extracting bandwidth, the measured TDS is suppressed up to 96% compared to the original chaos, and the entropy growth is higher than the noise-dominated threshold indicating that the dynamical process is noisy. The effects of extracting bandwidth and radio frequencies on the TDS and entropy growth are also clarified experimentally and theoretically. The experimental results are in good agreements with the theoretical results. The skewness of the laser intensity distribution is effectively improved to 0.001 with the optimal extracting bandwidth. This technique provides a promising tool to extract randomness and prepare desired entropy sources for chaotic secure communication and random number generation.

  • Chaotic time-delay signature suppression using quantum noise

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Time-delay signature (TDS) suppression of semiconductor lasers with external optical feedback is necessary to ensure the security of chaos-based secure communications. Here we numerically and experimentally demonstrate a technique to effectively suppress the TDS of chaotic lasers using quantum noise. The TDS and dynamical complexity are quantified using the autocorrelation function and normalized permutation entropy at the feedback delay time, respectively. Quantum noise from quadrature fluctuations of vacuum state is prepared through balanced homodyne measurement. The effects of strength and bandwidth of quantum noise on chaotic TDS suppression and complexity enhancement are investigated numerically and experimentally. Compared to the original dynamics, the TDS of this quantum-noise improved chaos is suppressed up to 94% and the bandwidth suppression ratio of quantum noise to chaotic laser is 1:25. The experiment agrees well with the theory. The improved chaotic laser is potentially beneficial to chaos-based random number generation and secure communication.