• Adjustment of force-gradient operator in symplectic methods

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Many force-gradient explicit symplectic integration algorithms have been designed for the Hamiltonian $H=T (\mathbf{p})+V(\mathbf{q})$ with kinetic energy $T(\mathbf{p})=\mathbf{p}^2/2$ in the existing references. When the force-gradient operator is appropriately adjusted as a new operator, they are still suitable for a class of Hamiltonian problems $H=K(\mathbf{p},\mathbf{q})+V(\mathbf{q})$ with \emph{integrable} part $K(\mathbf{p},\mathbf{q}) = \sum_{i=1}^{n} \sum_{j=1}^{n}a_{ij}p_ip_j+\sum_{i=1}^{n} b_ip_i$, where $a_{ij}=a_{ij}(\textbf{q})$ and $b_i=b_i(\textbf{q})$ are functions of coordinates $\textbf{q}$. The newly adjusted operator is not a force-gradient operator but is similar to the momentum-version operator associated to the potential $V$. The newly extended (or adjusted) algorithms are no longer solvers of the original Hamiltonian, but are solvers of slightly modified Hamiltonians. They are explicit symplectic integrators with symmetry or time-reversibility. Numerical tests show that the standard symplectic integrators without the new operator are generally poorer than the corresponding extended methods with the new operator in computational accuracies and efficiencies. The optimized methods have better accuracies than the corresponding non-optimized counterparts. Among the tested symplectic methods, the two extended optimized seven-stage fourth-order methods of Omelyan, Mryglod and Folk exhibit the best numerical performance. As a result, one of the two optimized algorithms is used to study the orbital dynamical features of a modified H\'{e}non-Heiles system and a spring pendulum. These extended integrators allow for integrations in Hamiltonian problems, such as the spiral structure in self-consistent models of rotating galaxies and the spiral arms in galaxies.

  • Applying explicit symplectic integrator to study chaos of charged particles around magnetized Kerr black hole

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In a recent work of Wu, Wang, Sun and Liu, a second-order explicit symplectic integrator was proposed for the integrable Kerr spacetime geometry. It is still suited for simulating the nonintegrable dynamics of charged particles moving around the Kerr black hole embedded in an external magnetic field. Its successful construction is due to the contribution of a time transformation. The algorithm exhibits a good long-term numerical performance in stable Hamiltonian errors and computational efficiency. As its application, the dynamics of order and chaos of charged particles is surveyed. In some circumstances, an increase of the dragging effects of the spacetime seems to weaken the extent of chaos from the global phase-space structure on Poincare sections. However, an increase of the magnetic parameter strengthens the chaotic properties. On the other hand, fast Lyapunov indicators show that there is no universal rule for the dependence of the transition between different dynamical regimes on the black hole spin. The dragging effects of the spacetime do not always weaken the extent of chaos from a local point of view.

  • Construction of explicit symplectic integrators in general relativity. III. Reissner-Nordstrom-(anti)-de Sitter black holes

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We give a possible splitting method to a Hamiltonian for the description of charged particles moving around the Reissner-Nordstrom-(anti)-de Sitter black hole with an external magnetic field. This Hamiltonian can be separated into six analytical solvable pieces, whose solutions are explicit functions of proper time. In this case, second- and fourth-order explicit symplectic integrators are easily available. They exhibit excellent long-term behavior in maintaining the boundness of Hamiltonian errors regardless of ordered or chaotic orbits if appropriate step-sizes are chosen. Under some circumstances, an increase of positive cosmological constant gives rise to strengthening the extent of chaos from the global phase space; namely, chaos of charged particles occurs easily for the accelerated expansion of the universe. However, an increase of the magnitude of negative cosmological constant does not. The different contributions on chaos are because the cosmological constant acts as a repulsive force in the Reissner-Nordstrom-de Sitter black hole, but an attractive force in the Reissner-Nordstrom-anti-de Sitter black hole.

  • Construction of explicit symplectic integrators in general relativity. IV. Kerr black holes

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In previous papers, explicit symplectic integrators were designed for nonrotating black holes, such as a Schwarzschild black hole. However, they fail to work in the Kerr spacetime because not all variables can be separable, or not all splitting parts have analytical solutions as explicit functions of proper time. To cope with this difficulty, we introduce a time transformation function to the Hamiltonian of Kerr geometry so as to obtain a time-transformed Hamiltonian consisting of five splitting parts, whose analytical solutions are explicit functions of the new coordinate time. The chosen time transformation function can cause time steps to be adaptive, but it is mainly used to implement the desired splitting of the time transformed Hamiltonian. In this manner, new explicit symplectic algorithms are easily available. Unlike Runge Kutta integrators, the newly proposed algorithms exhibit good long term behavior in the conservation of Hamiltonian quantities when appropriate fixed coordinate time steps are considered. They are better than same order implicit and explicit mixed symplectic algorithms and extended phase space explicit symplectic like methods in computational efficiency. The proposed idea on the construction of explicit symplectic integrators is suitable for not only the Kerr metric but also many other relativistic problems, such as a Kerr black hole immersed in a magnetic field, a Kerr Newman black hole with an external magnetic field, axially symmetric core shell systems, and five dimensional black ring metrics.

  • Study of chaos in rotating galaxies using extended force-gradient symplectic methods

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We take into account the dynamics of three types of models of rotating galaxies in polar coordinates in a rotating frame. Due to non-axisymmetric potential perturbations, the angular momentum varies with time, and the kinetic energy depends on the momenta and spatial coordinate. The existing explicit force-gradient symplectic integrators are not applicable to such Hamiltonian problems, but the recently extended force-gradient symplectic methods proposed in a previous work are. Numerical comparisons show that the extended force-gradient fourth-order symplectic method with symmetry is superior to the standard fourth-order symplectic method but inferior to the optimized extended force-gradient fourth-order symplectic method in accuracy. The optimized extended algorithm with symmetry is used to explore the dynamical features of regular and chaotic orbits in these rotating galaxy models. The gravity effects and the degree of chaos increase with an increase of the number of the radial terms in the series expansions of the potential. There are similar dynamical structures of regular and chaotical orbits in the three types of models for the same number of the radial terms in the series expansions, energy and initial conditions.

  • Study of chaos in rotating galaxies using extended force-gradient symplectic methods

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We take into account the dynamics of three types of models of rotating galaxies in polar coordinates in a rotating frame. Due to non-axisymmetric potential perturbations, the angular momentum varies with time, and the kinetic energy depends on the momenta and spatial coordinate. The existing explicit force-gradient symplectic integrators are not applicable to such Hamiltonian problems, but the recently extended force-gradient symplectic methods proposed in a previous work are. Numerical comparisons show that the extended force-gradient fourth-order symplectic method with symmetry is superior to the standard fourth-order symplectic method but inferior to the optimized extended force-gradient fourth-order symplectic method in accuracy. The optimized extended algorithm with symmetry is used to explore the dynamical features of regular and chaotic orbits in these rotating galaxy models. The gravity effects and the degree of chaos increase with an increase of the number of the radial terms in the series expansions of the potential. There are similar dynamical structures of regular and chaotical orbits in the three types of models for the same number of the radial terms in the series expansions, energy and initial conditions.

  • Temperature dependence of radiation damage annealing of Silicon Photomultipliers

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The last decade has increasingly seen the use of silicon photomultipliers (SiPMs) instead of photomultiplier tubes (PMTs). This is due to various advantages of the former on the latter like its smaller size, lower operating voltage, higher detection efficiency, insensitivity to magnetic fields and mechanical robustness to launch vibrations. All these features make SiPMs ideal for use on space based experiments where the detectors require to be compact, lightweight and capable of surviving launch conditions. A downside with the use of this novel type of detector in space conditions is its susceptibility to radiation damage. In order to understand the lifetime of SiPMs in space, both the damage sustained due to radiation as well as the subsequent recovery, or annealing, from this damage have to be studied. Here we present these studies for three different types of SiPMs from the Hamamatsu S13360 series. Both their behaviour after sustaining radiation equivalent to 2 years in low earth orbit in a typical mission is presented, as well as the recovery of these detectors while stored in different conditions. The storage conditions varied in temperature as well as in operating voltage. The study found that the annealing depends significantly on the temperature of the detectors with those stored at high temperatures recovering significantly faster and at recovering closer to the original performance. Additionally, no significant effect from a reasonable bias voltage on the annealing was observed. Finally the annealing rate as a function of temperature is presented along with various operating strategies for the future SiPM based astrophysical detector POLAR-2 as well as for future SiPM based space borne missions.

  • A deep learning method for the trajectory reconstruction of cosmic rays with the DAMPE mission

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: A deep learning method for the particle trajectory reconstruction with the DAMPE experiment is presented. The developed algorithms constitute the first fully machine-learned track reconstruction pipeline for space astroparticle missions. Significant performance improvements over the standard hand-engineered algorithms are demonstrated. Thanks to the better accuracy, the developed algorithms facilitate the identification of the particle absolute charge with the tracker in the entire energy range, opening a door to the measurements of cosmic-ray proton and helium spectra at extreme energies, towards the PeV scale, hardly achievable with the standard track reconstruction methods. In addition, the developed approach demonstrates an unprecedented accuracy in the particle direction reconstruction with the calorimeter at high deposited energies, above several hundred GeV for hadronic showers and above a few tens of GeV for electromagnetic showers.

  • Proton Irradiation of SiPM arrays for POLAR-2

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: POLAR-2 is a space-borne polarimeter, built to investigate the polarization of Gamma-Ray Bursts and help elucidate their mechanisms. The instrument is targeted for launch in 2024 or 2025 aboard the China Space Station and is being developed by a collaboration between institutes from Switzerland, Germany, Poland and China. The instrument will orbit at altitudes between 340km and 450km with an inclination of 42$^{\circ}$ and will be subjected to background radiation from cosmic rays and solar events. It is therefore pertinent to better understand the performance of sensitive devices under space-like conditions. In this paper we focus on the radiation damage of the silicon photomultiplier arrays S13361-6075NE-04 and S14161-6050HS-04 from Hamamatsu. The S13361 are irradiated with 58MeV protons at several doses up to 4.96Gy, whereas the newer series S14161 are irradiated at doses of 0.254Gy and 2.31Gy. Their respective performance degradation due to radiation damage are discussed. The equivalent exposure time in space for silicon photomultipliers inside POLAR-2 with a dose of 4.96Gy is 62.9 years (or 1.78 years when disregarding the shielding from the instrument). Primary characteristics of the I-V curves are an increase in the dark current and dark counts, mostly through cross-talk events. Annealing processes at $25^{\circ}C$ were observed but not studied in further detail. Biasing channels while being irradiated have not resulted in any significant impact. Activation analyses showed a dominant contribution of $\beta^{+}$ particles around 511keV. These resulted primarily from copper and carbon, mostly with decay times shorter than the orbital period.

  • Gamma-Ray Polarimetry of the Crab Pulsar Observed by POLAR

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The X/$\gamma$ ray polarimetry of the Crab pulsar/nebula is believed to hold crucial information on their emission models. In the past, several missions have shown evidence of polarized emission from the Crab. The significance of these measurements remains however limited. New measurements are therefore required. POLAR is a wide Field of View Compton-scattering polarimeter (sensitive in 50-500 keV) onboard the Chinese spacelab Tiangong-2 which took data from September 2016 to April 2017. Although not designed to perform polarization measurements of pulsars, we present here a novel method which can be applied to POLAR as well as that of other wide Field of View polarimeters. The novel polarimetric joint-fitting method for the Crab pulsar observations with POLAR, allows us to obtain constraining measurements of the pulsar component. The best fitted values and corresponding 1$\sigma$ deviations for the averaged phase interval: (PD=$14\substack{+15 \\ -10}$\%, PA=$108\substack{+33 \\ -54} ^{\circ}$), for Peak 1: (PD=$17\substack{+18 \-12}$\%, PA=$174\substack{+39 \\ -36} ^{\circ}$) and for Peak 2: (PD=$16\substack{+16 \\ -11}$\%, PA=$78\substack{+39 \\ -30} ^{\circ}$). Further more, the 3$\sigma$ upper limits on the polarization degree are for the averaged phase interval (55\%), Peak 1 (66\%) and Peak 2 (57\%). Finally, to illustrate the capabilities of this method in the future, we simulated two years observation to the Crab pulsar with POLAR-2. The results show that POLAR-2 is able to confirm the emission to be polarized with $5\sigma$ and $4\sigma$ confidence level if the Crab pulsar is polarized at $20\%$ and $10\%$ respectively.