• Quick-scanning X-ray Absorption Fine Structure Beamline at SSRF

    分类: 核科学技术 >> 辐射物理与技术 提交时间: 2024-04-29

    摘要: The layout and characteristics of the hard X-ray spectroscopy beamline (BL11B) at the Shanghai Synchrotron Radiation Facility are described herein. BL11B is a bending-magnet beamline dedicated to conventional millisecond-scale quick-scanning X-ray absorption fine structures. It is equipped with a cylindrical collimating mirror, a double-crystal monochromator comprising Si(111) and Si(311), a channel-cut quick-scanning Si(111) monochromator, a toroidal focusing mirror, and a high harmonics rejection mirror. It can provide 5–30 keV of X-rays with a photon flux of ~5 × 1011 photons/s and an energy resolution of ~ 1.31 × 10-4 at 10 keV. The performance of the beamline can satisfy the demands of users in the fields of catalysis, materials, and environmental science. This paper presents an overview of the beamline design and a detailed description of its performance and capabilities.

  • The Dynamics Beamline at SSRF

    分类: 核科学技术 >> 核科学与技术 提交时间: 2024-05-11

    摘要: The Dynamics beamline (D-Line), which combines synchrotron radiation infrared spectroscopy (SR-IR) and energy-dispersive X-ray absorption spectroscopy (ED-XAS), is the first beamline in the world to realize concurrent ED-XAS and SR-IR measurements at the same sample position on a millisecond time-resolved scale. This combined technique is effective for investigating rapid structural changes in atoms, electrons, and molecules in complicated disorder systems, such as those used in physics, chemistry, materials science, and extreme conditions. Moreover, ED-XAS and SR-IR can be used independently in the two branches of the D-Line. The ED-XAS branch is the first ED-XAS beamline in China, which uses a tapered undulator light source and can achieve approximately 2.5 × 1012 photons/s•300 eV BW@7.2 keV at the sample position. An exchangeable polychromator operating in the Bragg-reflection or Laue-transmission configuration is used in different energy ranges to satisfy the requirements for beam size and energy resolution. The focused beam size is approximately 3.5 μm (H) × 21.5 μm (V), and the X-ray energy range is 5–25 keV. Using one- and two-dimensional position-sensitive detectors with frame rates of up to 400 kHz enables time resolutions of tens of microseconds to be realized. Several distinctive techniques, such as the concurrent measurement of in-situ ED-XAS and infrared spectroscopy, time-resolved ED-XAS, high-pressure ED-XAS, XMCD, and pump–probe ED-XAS, can be applied to achieve different scientific goals.