• Cryospheric Climatology: Emerging Branch of Cryospheric Science

    Subjects: Other Disciplines >> Synthetic discipline submitted time 2023-03-28 Cooperative journals: 《中国科学院院刊》

    Abstract: Since the 1980s, the establishment and development of modern climate system theory have promoted the cross integration of cryospheric science and climatology, thus giving birth to a new branch of cryospheric science—cryospheric climatology. The formation and evolution of cryosphere are closely related to the earth’s climate. Now it is generally recognized that cryosphere is not only the product of climate under certain conditions, but also its changes affect the weather and climate, and affect the social economy and sustainable development of human beings. Cryospheric climatology is a science that studies the interaction between cryosphere and atmosphere and its physical mechanism. Starting from the introduction of the development history of cryospheric climatology, this paper systematically explains its basic concepts and subject characteristics. Cryospheric climatology focuses on the role of cryosphere in the formation and anomaly of weather, climate, and general atmospheric circulations, the process and mechanism of interaction between cryosphere and atmosphere, the development of climate system model and cryosphere models, the projection of change in climate and cryosphere, and the service function of cryospheric climatology to social economy. We will continue to deepen the understanding of interaction process and mechanism between the cryosphere and the atmosphere, and promote the development of parameterization schemes for the processes of terrestrial cryosphere, marine cryosphere, and atmospheric cryosphere towards refinement, quantification, and complexity. In particular, we will focus on considering the spatial-temporal scales of nonlinear effects among different components and elements of the cryosphere. The development of global and regional climate system model coupled with cryosphere processes is the future trend of cryospheric climatology.

  • 贺兰山区两次极端暴雨动力作用数值模拟分析

    Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology submitted time 2020-06-21 Cooperative journals: 《干旱区研究》

    Abstract:利用WRF模式地形敏感性试验,结合气流过山理论,研究了贺兰山地形对2016年8月21日、2018年7月22日贺兰山区两次极端暴雨的动力作用机制,结果显示:贺兰山地形对其迎风坡降水的正贡献可达57%,对腾格里沙漠降水的负贡献可达63.6%,对银川平原降水的影响取决于回涌作用;贺兰山强降水主要发生在湿Froude数在0.48~1的情况下;贺兰山通过地形阻挡使气流绕行,影响中小尺度系统的发生发展,从而影响强降水的落区与强度;贺兰山地形可在迎风坡产生-14×10-7 g·cm-2·hPa-1·s-1的水汽辐合中心,地形的辐合抬升加强了迎风坡暖湿气流的抬升,增强了高能高湿层的厚度,从而对迎风坡降水有增强作用;狭管效应和喇叭口地形收缩作用使贺兰山主峰东南侧成为强降水易发区。

  • 库尔勒市2015年两次冰雹天气成因及雷达回波特征对比分析

    Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology submitted time 2019-08-02 Cooperative journals: 《干旱区地理》

    Abstract:利用常规探测资料、库尔勒多普勒天气雷达、风云2E静止卫星以及NCEP/NCAR提供的0.5°×0.5°再分析资料,对2015年发生在库尔勒市的两次冰雹天气从天气形势、环境背景及强对流云团结构等方面进行了成因分析,并重点对比了雷达回波特征。结果表明:4月17日冰雹天气为弱短波槽影响,系统浅薄,6月1日为低涡降雹,系统深厚。两次冰雹共性特征很多:在冰雹发生前,有强的垂直风切变,0 ℃层和-20 ℃层高度适宜且之间伴有浅薄的饱和湿层。通过塔里木盆地东南缘水汽的输送,云团在天山南麓及切变线附近合并降雹是这两次冰雹最突出的特征。雷达图中冰雹云发展中强回波中心值>55 dBz,配合有逆风区,存在明显的回波悬垂和弱回波区,强的垂直风切变是其发展和维持的主要原因。冰雹云形成于云顶亮温<-50 ℃的冷云盖东南边缘的云团合并处附近,并且主要沿中低层平均风方向移动。