• Supercritical water oxidation of spent extraction solvent simulants

    分类: 核科学技术 >> 裂变堆工程技术 提交时间: 2023-06-18 合作期刊: 《Nuclear Science and Techniques》

    摘要: The rapid development of nuclear technology has led to more liquid organic radioactive wastes. Different from the regular aqueous radioactive wastes, these liquids possess a higher hazard potential and cannot be disposed through the conventional methods due to their radioactivity and chemical nature. Spent extraction solvent is a kind of common liquid organic radioactive wastes. In this work, tri-butyl phosphate (TBP), which is more difficult to degrade in the spent extraction solvent, was used as the model compound. Influences of reaction conditions on total organic carbon (TOC) removal and the volume percentage of each gas component under supercritical water oxidation (SCWO) were studied. The SCWO behaviors of spent extraction solvent simulants were studied under the optimal conditions derived from the TBP experiment. The SCWO experiments were studied at 400550 ℃, oxidant stoichiometric ratio of 0200%, feed concentration of 1.5%4% and pressure of 25 MPa for 1575 s. The results show that the TOC removal of the simulants was greater than 99.7% and CH4, H2 and CO were not detected at 550 ℃, 25 MPa, oxidant stoichiometric ratio of 150%, feed concentration of 3%, and residence time of 30 s.

  • Development of a three dimension multi-physics code for molten salt fast reactor

    分类: 核科学技术 >> 裂变堆工程技术 提交时间: 2023-06-18 合作期刊: 《Nuclear Science and Techniques》

    摘要: Molten Salt Reactor (MSR) was selected as one of the six innovative nuclear reactors by the Generation IV International Forum (GIF). The circulating-fuel in the can-type molten salt fast reactor makes the neutronics and thermo-hydraulics of the reactor strongly coupled and different from that of traditional solid-fuel reactors. In the present paper, a new coupling model is presented that physically describes the inherent relations between the neutron flux, the delayed neutron precursor, the heat transfer and the turbulent flow. Based on the model, integrating nuclear data processing, CAD modeling, structured and unstructured mesh technology, data analysis and visualization application, a three dimension steady state simulation code system (MSR3DS) for the can-type molten salt fast reactor is developed and validated. In order to demonstrate the ability of the code, the three dimension distributions of the velocity, the neutron flux, the delayed neutron precursor and the temperature were obtained for the simplified MOlten Salt Advanced Reactor Transmuter (MOSART) using this code. The results indicate that the MSR3DS code can provide a feasible description of multi-physical coupling phenomena in can-type molten salt fast reactor. Furthermore, the code can well predict the flow effect of fuel salt and the transport effect of the turbulent diffusion.