• Improving the accuracy of precipitation estimates in a typical inland arid area of China using a dynamic Bayesian model averaging approach

    分类: 地球科学 >> 大气科学 提交时间: 2024-03-13 合作期刊: 《干旱区科学》

    摘要: Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations, limited access to precipitation data, and significant water scarcity. Evaluating and integrating precipitation datasets from different sources to accurately characterize precipitation patterns has become a challenge to provide more accurate and alternative precipitation information for the region, which can even improve the performance of hydrological modelling. This study evaluated the applicability of widely used five satellite-based precipitation products (Climate Hazards Group InfraRed Precipitation with Station (CHIRPS), China Meteorological Forcing Dataset (CMFD), Climate Prediction Center morphing method (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), and Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA)) and a reanalysis precipitation dataset (ECMWF Reanalysis v5-Land Dataset (ERA5-Land)) in Xinjiang using ground-based observational precipitation data from a limited number of meteorological stations. Based on this assessment, we proposed a framework that integrated different precipitation datasets with varying spatial resolutions using a dynamic Bayesian model averaging (DBMA) approach, the expectation-maximization method, and the ordinary Kriging interpolation method. The daily precipitation data merged using the DBMA approach exhibited distinct spatiotemporal variability, with an outstanding performance, as indicated by low root mean square error (RMSE=1.40 mm/d) and high Person's correlation coefficient (CC=0.67). Compared with the traditional simple model averaging (SMA) and individual product data, although the DBMA-fused precipitation data were slightly lower than the best precipitation product (CMFD), the overall performance of DBMA was more robust. The error analysis between DBMA-fused precipitation dataset and the more advanced Integrated Multi-satellite Retrievals for Global Precipitation Measurement Final (IMERG-F) precipitation product, as well as hydrological simulations in the Ebinur Lake Basin, further demonstrated the superior performance of DBMA-fused precipitation dataset in the entire Xinjiang region. The proposed framework for solving the fusion problem of multi-source precipitation data with different spatial resolutions is feasible for application in inland arid areas, and aids in obtaining more accurate regional hydrological information and improving regional water resources management capabilities and meteorological research in these regions.

  • Exploration of playa surface crusts in Qehan Lake, China through field investigation and wind tunnel experiments

    分类: 地球科学 >> 地理学 提交时间: 2023-05-11 合作期刊: 《干旱区科学》

    摘要:Globally, many lakes are drying up, leaving exposed lakebeds where wind erosion releases dust and sand rich in salt and harmful heavy metals into the atmosphere. Therefore, understanding the characteristics and spatial distribution of playa surface crusts is important to recognize the manifestation of salt dust storms. The objective of this study was to explore the playa surface crust types as well as their spatial distribution and evolution of Qehan Lake in Inner Mongolia Autonomous Region, China to understand the salt dust release potential of different types of playa surface crusts. Various crust characteristics were investigated by field sampling in Qehan Lake, and playa surface crusts were further divided into five types: vegetated areas, salt crusts, clay flats, curly crusts, and margins. It should be noted that curly crusts were distributed in clay flats and covered only a small area in Qehan Lake. The spatial distribution characteristics of playa surface crust types were obtained by supervised classification of remote sensing images, and the salt dust release potential of crusts was explored by the wind tunnel experiments. The field investigation of Qehan Lake revealed that playa surface crust types had a circum-lake band distribution from the inside to the outside of this lake, which were successively vegetated areas, clay flats, salt crusts, and margins. The spatial distribution patterns of playa surface crust types were mainly controlled by the hydrodynamics of the playa, soil texture, and groundwater. There was a significant negative correlation between crust thickness and electrical conductivity. The results of the wind tunnel experiments showed that the initial threshold of friction wind velocity for the salt dust release was higher in clay flats (0.7–0.8 m/s) than in salt crusts (0.5–0.6 m/s). Moreover, the particle leap impact processes occurring under natural conditions may reduce this threshold value. Salinity was the main factor controlling the difference in the initial threshold of friction wind velocity for the salt dust release of clay flats and salt crusts. This study provides a scientific reference for understanding how salt dust is released from a lakebed, which may be used for ecological restoration of dry salt lakes.