Your conditions: 徐大可
  • Research Progress in Corrosion of Steels Induced by Sulfate Reducing Bacteria

    Subjects: Materials Science >> Materials Science (General) submitted time 2023-03-31 Cooperative journals: 《腐蚀科学与防护技术》

    Abstract: Research progress on corrosion of carbon steels induced by SRB is reviewed in terms of the formation mechanism of biofilm, the traditional corrosion mechanism of SRB, mechanism of biocatalysis cathodic sulfate reduction, and the corrosion of carbon steels under the deposit scale induced by SRB biomineralization. In addition, the paper focused on the key role of the theory of bioenergetics and bioelectrochemistry in understanding the mechanism of MIC induced by SRB. The novel technologies and methods for control of SRB biofilm which provide reference for control of SRB corrosion are introduced.

  • In Vitro Biocompatibility and Antibacterial Property of a Novel Magnesium Phosphate Whisker

    Subjects: Materials Science >> Materials Science (General) submitted time 2023-03-31 Cooperative journals: 《材料研究学报》

    Abstract: The in vitro biocompatibility of a novel magnesium phosphate whisker (M-PW) was evaluated by real-time cellular analysis (RTCA) and Annexin-V/PI double marking methods, and its antibacterial property was evaluated by co-culture method. Results show that the in vitro biocompatibility of the MPW decreased with the increase of M-PW in the suspensions. It possessed excellent in vitro biocompatibility for the suspensions containing 500 μg/mL or lower amount of the M-PW. It had no toxic effect on osteoblast cells for the suspension with 50 and 200 μg/mL of M-PW respectively. The antibacterial efficacy of the suspensions increased with the increasing amount of M-PW. The antibacterial efficacy against Escherichia coli and Staphylococcus aureus achieved 96.84% and 99.93% respectively for the suspension with 500 μg/mL of M-PW, demonstrating that the novel phosphorous-magnesium whisker possesses excellent antibacterial property.

  • Study on Mechanisms of Microbiologically Influenced Corrision of Metal from the Perspective of Bioelectrochemistry and Bio-energetics

    Subjects: Materials Science >> Materials Science (General) submitted time 2023-03-31 Cooperative journals: 《材料研究学报》

    Abstract: People realized that microbes can cause serious microbiologically influenced corrosion (MIC) attack on metals since a century ago. In the past 20 years, the research relevant to MIC became more and more important due to severe damages and huge economic losses caused by microorganisms. Due to a lack of understanding, MIC has even been considered to be a“myth”in the field of corrosion, therefore, a theory which can cogently explain MIC phenomena is needed. The latest research result indicated that MIC is a bioelectrochemical process in essence. When the organic carbon is not available or fully consumed, metal such as iron would replace organic carbons as an electron donor for microorganisms, resulting in the occurrence of MIC. In addition, another theory related with the mechanism of MIC is that microbes could secrete corrosive metabolites such as organic acids. It is well known that corrosion is an exergonic process, and the microorganisms would utilize the energy released by the corrosion of metal to obtain their maintenance energy. Currently, electrochemical methods are widely used in MIC research, and the classical cathodic depolarization theory (CDT) was proposed based on electrochemistry. However, if only from the perspective of the electrochemistry, many phenomena of MIC can not be cogently explained. Researchers realized that the knowledge of bioenergetics and bioelectrochemistry may be the key to better understand the interactions between microorganisms and metals and then the process of MIC. This review is to summarize the recent works, and introduce the latest theories concerning the mechanism of MIC emphatically, such as biocatalytic cathodic sulfate reduction (BCSR) and electrical microbial influenced corrosion (EMIC). The introduction of the novel perspective to study MIC from bioenergetics and bioelectrochemistry is also provided in this review. Based on bioenergetics and bioelectrochemistry, the BCSR theory can cogently explain how and why MIC happens, which has been a longterm unsolved research problem.

  • 新型含铜管线钢的微生物腐蚀行为研究

    Subjects: Materials Science >> Materials Science (General) submitted time 2016-11-15 Cooperative journals: 《金属学报》

    Abstract:通过对商用X80管线钢进行适当的Cu合金化功能性改进,制备出不同Cu含量(1.06%Cu,1.46%Cu,2.00%Cu)的新型管线钢。利用抗菌性能检测、电化学测试、腐蚀产物分析、激光共聚焦显微镜(CLSM)等方法研究了含铜管线钢的抗菌性能和微生物腐蚀行为。研究表明,含铜管线钢对大肠杆菌和金黄色葡萄球菌均具有强烈的杀灭作用,以多边形铁素体为特征的1.0Cu管线钢能够保证在X80钢强韧性的水平下具有优异的抗微生物腐蚀性能。含铜管线钢中富铜相对抗微生物腐蚀性能起到了关键作用。1.0Cu钢和X80钢的线性极化电阻(LPR)在含有硫酸盐还原菌(SRB)的土壤浸出液中浸泡2天后均急剧下降,导致X80钢的腐蚀电流密度明显大于1.0Cu钢。显微观察表明,大量生物膜的生成导致在SRB环境中的X80钢的点蚀数量和最大点蚀坑深度均高于1.0Cu钢(23.6μmvs1.9μm)。

  • 热处理对3Cr13MoCu马氏体不锈钢抗菌性能的影响研究

    Subjects: Materials Science >> Materials Science (General) submitted time 2016-11-04 Cooperative journals: 《金属学报》

    Abstract:利用抗菌性能检测、硬度测试、透射电镜观察、激光共聚焦显微镜观察和扫描电镜观察等手段研究了时效处理对3Cr13MoCu马氏体不锈钢抗菌性能的影响。研究结果表明,随着时效温度的升高,3Cr13MoCu马氏体不锈钢中的富Cu相不断长大,对金黄色葡萄球菌的杀菌率不断提高,但其硬度迅速下降。而在500 ℃进行时效处理时,延长时效时间至10~14 h后,钢中富Cu相含量不断增加,其抗菌性能和硬度均不断提高。结合抗菌性能和硬度测试结果,确定3Cr13MoCu不锈钢的优化热处理制度为:1080 ℃固溶30 min,水冷 + 500 ℃时效10~14 h,空冷。在此抗菌热处理工艺下,3Cr13MoCu不锈钢表现出了非常优异的抗菌性能,在杀灭游离态细菌的同时,还可以有效地抑制表面细菌生物膜的形成。