Your conditions: 马耀明
  • Comprehensive atmospheric and environmental observations in the Himalayan region advances development of Earth system science on the Tibetan Plateau

    Subjects: Statistics >> Social Statistics submitted time 2023-12-03 Cooperative journals: 《中国科学院院刊》

    Abstract: The Himalayan region, represented by Mount Qomolangma, is not only a typical area where special atmospheric processes on the Tibetan Plateau (TP) are concentrated, but also an important research area for climate, ecology, and environmental changes. The Qomolangma Station for Atmospheric and Environmental Observation and Research, Chinese Academy of Sciences (abbreviated as QOMS) is located in the core area of Mount Qomolangma National Nature Reserve. It is dedicated to studying the complex terrain mountain atmospheric processes and environmental changes of the Third Pole of the Earth, focusing on the land-atmosphere interaction process on the TP under the background of climate change. Based on long-term positioning monitoring and field scientific observations of surface, atmosphere, environment, glaciers, ecology, and geophysical processes, a comprehensive land-atmosphere interaction observation system over the TP represented by QOMS has been developed and designed. Key parameters of surface features that influence the material and energy exchange between land and atmosphere in this region have been identified. The interaction processes between complex mountainous terrain of the plateau and the westerly large-scale atmospheric circulation and its impact on the development of the atmospheric boundary layer have been revealed. Remote sensing inversion algorithms and parameterization schemes for estimating surface energy fluxes in the region have been developed and verified, and a theory of pointface combination for satellite remote sensing inversion of complex land surface water and heat flux on the TP has been established. The establishment of the multi-time and space, multi-means, high-precision, and multi-element integrated observation platform has significantly improved the meteorological observation capabilities of the TP, especially in the Qomolangma region. It not only provides basic data for in-depth systematized research on the Earth system of the TP, but also makes up for long-term observation deficiencies on the plateau and has made QOMS an irreplaceable base for global Earth system science research in the Himalayan region, providing a support platform for understanding the role of the TP in global change and its response to global change.

  • Effect of Energy and Water Circulation over Tibetan Plateau

    Subjects: Other Disciplines >> Synthetic discipline submitted time 2023-03-28 Cooperative journals: 《中国科学院院刊》

    Abstract: The total amount of radiation over the Tibetan Plateau (TP) is the largest in the world with an extreme area of super solar constant, where a huge heat source “embedded” in the middle troposphere forms a hollow heat island with the effect exceeding any urban agglomerations in the world and an inestimable driving impact on global and regional changes in atmospheric circulation system. In closely association with the seasonal variations of TP’s thermal forcing, the Asian summer monsoon is the most widely in the world with the strongest monsoon intensity. The seasonal changes of solar radiation results in a “rapid response” of sensible heat and its dynamic movement over the TP’s large terrain. The advancing cold-rainfall belts of East Asian summer monsoon stop just along the mountain-plain boundary area in China’s three ladder terrain distribution, indicating that the TP may play key role in summer monsoon process of air-sea-land interactions. The extreme regions of low cloud cover and total cloud cover over China, the sources of large rivers (Yangtze River, Lancang River, Yarlung Zangbo River, etc.) in the TP and the group of lakes and rivers in central-eastern China are spatially almost consistent, reflecting that an inseparable connection of the formation of “Asian Water Tower” and the unique cloud precipitation structure in the TP. The studies revealed that a significant influence of the TP’s atmospheric heat source on the cloudprecipitation and water vapor transport pattern in local and downstream areas. The precipitation in the Yangtze River Reaches has an obvious zonal high correlation structure with the low cloud cover over China, the precipitation in the Yangtze River Reaches has an important relation with the thermal divers of upper TP’s Asian Water Tower, and convection system. From the perspective of acrossequatorial circulations, it is found that the summertime cross-equatorial lower south and upper-north flows between the northern to southern hemispheric atmosphere appears just in the Asian and the North American regions with the TP and the Rocky Mountains. The TP’s zonal and meridional circulation structure and the relevant mechanism of regional and global atmospheric circulation confirm the thermal role of the TP’s “roof of the world” and the convection activities in global energy and water circles. The three-dimensional distribution of special water vapor on the TP and the vertical circulation of atmosphere across the hemispheres show that the TP contributes significantly to the change of global atmospheric circulation. A global Water Tower concept in the TP’s atmosphere was put forward, and it is believed that the “water supply” and “water storage” system of TP’s water tower is built with the “water storage tank” system of the plateau surface glaciers, snow cover and lakes, as well as “water supply pipelines” of rivers transporting water from the water tower to the downstream areas, and the upper atmosphere also provides the channels for outward transport of water vapor from the TP. The TP’s special atmospheric water circulation across the hemisphere can establish “water tower of the world” and its surrounding areas the unique hydrological function, which could provide a comprehensive description of physical picture about the TP’s “water tower of the world” and the land-sea-air water vapor circulation in global scale.

  • 科技创新在“一带一路”建设中扮演关键角色

    Subjects: Management Science >> Science ology and Management submitted time 2018-01-11 Cooperative journals: 《智库理论与实践》

    Abstract:[目的/意义]“一带一路”倡议旨在为全球经济打通“任督二脉”,促进全球经济共同、包容、强劲、可持续发展。中国提出的这一宏大国际合作计划所面临的风险和挑战是空前的。除了要防范沿线各国的政治和社会风险之外,还必须有效应对气候变化、自然灾害、传染病、环境污染、生态退化、水与能源资源短缺等各种挑战。如何有效应对这些挑战,对于“一带一路”建设的成败至关重要。[方法/过程]本文分析了“中巴经济走廊”建设所面临的挑战及科技创新在其中所起的作用。 [结果/结论]科技创新在“一带一路”建设中扮演十分关键的角色,发挥不可或缺的引领、支撑和保障作用。

  • 从青藏高原到第三极和泛第三极

    Subjects: Environmental Sciences, Resource Sciences >> Environmentology submitted time 2017-09-20 Cooperative journals: 《中国科学院院刊》

    Abstract:青藏高原对我国、亚洲甚至北半球的人类生存环境和可持续发展起着重要的环境和生态屏障作用。以青藏高原为核心的第三极以及受其影响的东亚、南亚、中亚、西亚、中东欧等泛第三极地区,面积约2 000多万平方公里,涵盖20多个国家的30多亿人口,是“一带一路”的核心地带和全球人口分布最密集区。随着“一带一路”重大倡议的推进,泛第三极环境变化的重要性受到全球关注。泛第三极地区已经出现重大资源环境问题,如何保护这一地区资源环境的可持续性是“一带一路”建设实施面临的重大挑战。实施“泛第三极环境变化与绿色丝绸之路建设”专项,将从区域甚至全球尺度深入研究这一地区的资源环境科学问题,前瞻、科学地提出区域可持续发展协同应对战略,为“守护好世界上最后一方净土”和“一带一路”建设服务。