您选择的条件: WANG Tian
  • Transport mechanism of eroded sediment particles under freeze-thaw and runoff conditions

    分类: 地球科学 >> 地理学 提交时间: 2022-05-25 合作期刊: 《干旱区科学》

    摘要: Abstract: Hydraulic erosion associated with seasonal freeze-thaw cycles is one of the most predominant factors, which drives soil stripping and transportation. In this study, indoor simulated meltwater erosion experiments were used to investigate the sorting characteristics and transport mechanism of sediment particles under different freeze-thaw conditions (unfrozen, shallow-thawed, and frozen slopes) and runoff rates (1, 2, and 4 L/min). Results showed that the order of sediment particle contents was silt>sand>clay during erosion process on unfrozen, shallow-thawed, and frozen slopes. Compared with original soils, clay and silt were lost, and sand was deposited. On unfrozen and shallow-thawed slopes, the change of runoff rate had a significant impact on the enrichment of clay, silt, and sand particles. In this study, the sediment particles transported in the form of suspension/saltation were 83.58%86.54% on unfrozen slopes, 69.24%84.89% on shallow-thawed slopes, and 83.75%87.44% on frozen slopes. Moreover, sediment particles smaller than 0.027 mm were preferentially transported. On shallow-thawed slope, relative contribution percentage of suspension/saltation sediment particles gradually increased with the increase in runoff rate, and an opposite trend occurred on unfrozen and frozen slopes. At the same runoff rate, freeze-thaw process had a significant impact on the relative contribution percentage of sediment particle transport via suspension/saltation and rolling during erosion process. The research results provide an improved transport mechanism under freeze-thaw condition for steep loessal slopes.

  • Influences of sand cover on erosion processes of loess slopes based on rainfall simulation experiments

    分类: 地球科学 >> 地球科学其他学科 提交时间: 2017-12-08 合作期刊: 《干旱区科学》

    摘要: Aeolian-fluvial interplay erosion regions are subject to intense soil erosion and are of particular concern in loess areas of northwestern China. Understanding the composition, distribution, and transport processes of eroded sediments in these regions is of considerable scientific significance for controlling soil erosion. In this study, based on laboratory rainfall simulation experiments, we analyzed rainfall-induced erosion processes on sand-covered loess slopes (SS) with different sand cover patterns (including length and thickness) and uncovered loess slopes (LS) to investigate the influences of sand cover on erosion processes of loess slopes in case regions of aeolian-fluvial erosion. The grain-size curves of eroded sediments were fitted using the Weibull function. Compositions of eroded sediments under different sand cover patterns and rainfall intensities were analyzed to explore sediment transport modes of SS. The influences of sand cover amount and pattern on erosion processes of loess slopes were also discussed. The results show that sand cover on loess slopes influences the proportion of loess erosion and that the compositions of eroded sediments vary between SS and LS. Sand cover on loess slopes transforms silt erosion into sand erosion by reducing splash erosion and changing the rainfall-induced erosion processes. The percentage of eroded sand from SS in the early stage of runoff and sediment generation is always higher than that in the late stage. Sand cover on loess slopes aggravates loess erosion, not only by adding sand as additional eroded sediments but also by increasing the amount of eroded loess, compared with the loess slopes without sand cover. The influence of sand cover pattern on runoff yield and the amount of eroded sediments is larger than that of sand cover amount. Furthermore, given the same sand cover pattern, a thicker sand cover could increase sand erosion while a thinner sand cover could aggravate loess erosion. This difference explains the existence of intense erosion on slopes that are thinly covered with sand in regions where aeolian erosion and fluvial erosion interact.