按提交时间
按主题分类
按作者
按机构
您选择的条件: Hezhen Liu
  • NuSTAR Observations of Intrinsically X-ray Weak Quasar Candidates: An Obscuration-Only Scenario

    分类: 天文学 >> 天体物理学 提交时间: 2023-02-21

    摘要: We utilize recent NuSTAR observations (co-added depth 55-120 ks) of PG 1001+054, PG 1254+047, and PHL 1811 to constrain their hard X-ray (≳5 keV) weakness and spectral shapes, and thus to investigate the nature of their extreme X-ray weakness. These quasars showed very weak soft X-ray emission, and they were proposed to be intrinsically X-ray weak, with the X-ray coronae producing weak continuum emission relative to their optical/UV emission. However, the new observations suggest an alternative explanation. The NuSTAR 3-24 keV spectral shapes for PG 1001+054 and PHL 1811 are likely flat (effective power-law photon indices \Gamma_{\rm eff}=1.0^{+0.5}_{-0.6} and \Gamma_{\rm eff}=1.4^{+0.8}_{-0.7}, respectively), while the shape is nominal for PG 1254+047 (\Gamma_{\rm eff}=1.8\pm0.3). PG 1001+054 and PHL 1811 are significantly weak at hard X-ray energies (by factors of 26-74 at rest-frame 8 keV) compared to the expectations from their optical/UV emission, while PG 1254+047 is only hard X-ray weak by a factor of 3. We suggest that X-ray obscuration is present in all three quasars. We propose that, as an alternative to the intrinsic X-ray weakness + X-ray obscuration scenario, the soft and hard X-ray weakness of these quasars can be uniformly explained under an obscuration-only scenario. This model provides adequate descriptions of the multi-epoch soft and hard X-ray data of these quasars, with variable column density and leaked fraction of the partial-covering absorber. We suggest that the absorber is the clumpy dust-free wind launched from the accretion disk. These quasars probably have super-Eddington accretion rates that drive powerful and high-density winds.

  • A Rapid and Large-Amplitude X-ray Dimming Event in a z ~ 2.6 Radio-Quiet Quasar

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We report a dramatic fast X-ray dimming event in a z=2.627 radio-quiet type 1 quasar, which has an estimated supermassive black hole (SMBH) mass of $6.3\times 10^{9} M_\odot$. In the high X-ray state, it showed a typical level of X-ray emission relative to its UV/optical emission. Then its 0.5-2 keV (rest-frame 1.8-7.3 keV) flux dropped by a factor of $\approx7.6$ within two rest-frame days. The dimming is associated with spectral hardening, as the 2-7 keV (rest-frame 7.3-25.4 keV) flux dropped by only $17\%$ and the effective power-law photon index of the X-ray spectrum changed from $\approx2.3$ to $\approx0.9$. The quasar has an infrared (IR)-to-UV spectral energy distribution and a rest-frame UV spectrum similar to those of typical quasars, and it does not show any significant long-term variability in the IR and UV/optical bands. Such an extremely fast and large-amplitude X-ray variability event has not been reported before in luminous quasars with such massive SMBHs. The X-ray dimming is best explained by a fast-moving absorber crossing the line of sight and fully covering the X-ray emitting corona. Adopting a conservatively small size of $5 {G} M_{\rm BH}/c^2$ for the X-ray corona, the transverse velocity of the absorber is estimated to be $\approx 0.9c$. The quasar is likely accreting with a high or even super-Eddington accretion rate, and the high-velocity X-ray absorber is probably related to a powerful accretion-disk wind. Such an energetic wind may eventually evolve into a massive galactic-scale outflow, providing efficient feedback to the host galaxy.