按提交时间
按主题分类
按作者
按机构
您选择的条件: Christophe, Blanchi
  • Canonical Workflow for Machine Learning Tasks

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-28 合作期刊: 《数据智能(英文)》

    摘要: There is a huge gap between (1) the state of workflow technology on the one hand and the practices in the many labs working with data driven methods on the other and (2) the awareness of the FAIR principles and the lack of changes in practices during the last 5 years. The CWFR concept has been defined which is meant to combine these two intentions, increasing the use of workflow technology and improving FAIR compliance. In the study described in this paper we indicate how this could be applied to machine learning which is now used by almost all research disciplines with the well-known effects of a huge lack of repeatability and reproducibility. Researchers will only change practices if they can work efficiently and are not loaded with additional tasks. A comprehensive CWFR framework would be an umbrella for all steps that need to be carried out to do machine learning on selected data collections and immediately create a comprehensive and FAIR compliant documentation. The researcher is guided by such a framework and information once entered can easily be shared and reused. The many iterations normally required in machine learning can be dealt with efficiently using CWFR methods. Libraries of components that can be easily orchestrated using FAIR Digital Objects as a common entity to document all actions and to exchange information between steps without the researcher needing to understand anything about PIDs and FDO details is probably the way to increase efficiency in repeating research workflows. As the Galaxy project indicates, the availability of supporting tools will be important to let researchers use these methods. Other as the Galaxy framework suggests, however, it would be necessary to include all steps necessary for doing a machine learning task including those that require human interaction and to document all phases with the help of structured FDOs.

  • Canonical Workflow for Experimental Research

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-28 合作期刊: 《数据智能(英文)》

    摘要: The overall expectation of introducing Canonical Workflow for Experimental Research and FAIR digital objects (FDOs) can be summarised as reducing the gap between workflow technology and research practices to make experimental work more efficient and improve FAIRness without adding administrative load on the researchers. In this document, we will describe, with the help of an example, how CWFR could work in detail and improve research procedures. We have chosen the example of experiments with human subjects which stretches from planning an experiment to storing the collected data in a repository. While we focus on experiments with human subjects, we are convinced that CWFR can be applied to many other data generation processes based on experiments. The main challenge is to identify repeating patterns in existing research practices that can be abstracted to create CWFR. In this document, we will include detailed examples from different disciplines to demonstrate that CWFR can be implemented without violating specific disciplinary or methodological requirements. We do not claim to be comprehensive in all aspects, since these examples are meant to prove the concept of CWFR.

  • Not Ready for Convergence in Data Infrastructures

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-27 合作期刊: 《数据智能(英文)》

    摘要: Much research is dependent on Information and Communication Technologies (ICT). Researchers in different research domains have set up their own ICT systems (data labs) to support their research, from data collection (observation, experiment, simulation) through analysis (analytics, visualisation) to publication. However, too frequently the Digital Objects (DOs) upon which the research results are based are not curated and thus neither available for reproduction of the research nor utilization for other (e.g., multidisciplinary) research purposes. The key to curation is rich metadata recording not only a description of the DO and the conditions of its use but also the provenance the trail of actions performed on the DO along the research workflow. There are increasing real-world requirements for multidisciplinary research. With DOs in domain#2;specific ICT systems (silos), commonly with inadequate metadata, such research is hindered. Despite wide agreement on principles for achieving FAIR (findable, accessible, interoperable, and reusable) utilization of research data, current practices fall short. FAIR DOs offer a way forward. The paradoxes, barriers and possible solutions are examined. The key is persuading the researcher to adopt best practices which implies decreasing the cost (easy to use autonomic tools) and increasing the benefit (incentives such as acknowledgement and citation) while maintaining researcher independence and flexibility.