您选择的条件: Yanbiao Ma
  • Curvature-Balanced Feature Manifold Learning for Long-Tailed Classification

    分类: 计算机科学 >> 计算机科学技术其他学科 提交时间: 2023-03-22

    摘要: To address the challenges of long-tailed classification, researchers have proposed several approaches to reduce model bias, most of which assume that classes with few samples are weak classes. However, recent studies have shown that tail classes are not always hard to learn, and model bias has been observed on sample-balanced datasets, suggesting the existence of other factors that affect model bias. In this work, we systematically propose a series of geometric measurements for perceptual manifolds in deep neural networks, and then explore the effect of the geometric characteristics of perceptual manifolds on classification difficulty and how learning shapes the geometric characteristics of perceptual manifolds. An unanticipated finding is that the correlation between the class accuracy and the separation degree of perceptual manifolds gradually decreases during training, while the negative correlation with the curvature gradually increases, implying that curvature imbalance leads to model bias. Therefore, we propose curvature regularization to facilitate the model to learn curvature-balanced and flatter perceptual manifolds. Evaluations on multiple long-tailed and non-longtailed datasets show the excellent performance and exciting generality of our approach, especially in achieving significant performance improvements based on current state-ofthe-art techniques. Our work opens up a geometric analysis perspective on model bias and reminds researchers to pay attention to model bias on non-long-tailed and even samplebalanced datasets. The code and model will be made public.

  • Delving into Semantic Scale Imbalance

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2023-02-16

    摘要: Model bias triggered by long-tailed data has been widely studied. However, measure based on the number of samples cannot explicate three phenomena simultaneously: (1) Given enough data, the classification performance gain is marginal with additional samples. (2) Classification performance decays precipitously as the number of training samples decreases when there is insufficient data. (3) Model trained on sample-balanced datasets still has different biases for different classes. In this work, we define and quantify the semantic scale of classes, which is used to measure the feature diversity of classes. It is exciting to find experimentally that there is a marginal effect of semantic scale, which perfectly describes the first two phenomena. Further, the quantitative measurement of semantic scale imbalance is proposed, which can accurately reflect model bias on multiple datasets, even on sample-balanced data, revealing a novel perspective for the study of class imbalance. Due to the prevalence of semantic scale imbalance, we propose semantic-scale-balanced learning, including a general loss improvement scheme and a dynamic re-weighting training framework that overcomes the challenge of calculating semantic scales in real-time during iterations. Comprehensive experiments show that dynamic semantic-scale-balanced learning consistently enables the model to perform superiorly on large-scale long-tailed and non-long-tailed natural and medical datasets, which is a good starting point for mitigating the prevalent but unnoticed model bias. In addition, we look ahead to future challenges.

  • Geometric Prior Guided Feature Representation Learning for Long-Tailed Classification

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2023-02-16

    摘要: Real-world data are long-tailed, the lack of tail samples leads to a significant limitation in the generalization ability of the model. Although numerous approaches of class re-balancing perform well for moderate class imbalance problems, additional knowledge needs to be introduced to help the tail class recover the underlying true distribution when the observed distribution from a few tail samples does not represent its true distribution properly, thus allowing the model to learn valuable information outside the observed domain. In this work, we propose to leverage the geometric information of the feature distribution of the well-represented head class to guide the model to learn the underlying distribution of the tail class. Specifically, we first systematically define the geometry of the feature distribution and the similarity measures between the geometries, and discover four phenomena regarding the relationship between the geometries of different feature distributions. Then, based on four phenomena, feature uncertainty representation is proposed to perturb the tail features by utilizing the geometry of the head class feature distribution. It aims to make the perturbed features cover the underlying distribution of the tail class as much as possible, thus improving the models generalization performance in the test domain. Finally, we design a three-stage training scheme enabling feature uncertainty modeling to be successfully applied. Experiments on CIFAR-10/100-LT, ImageNet-LT, and iNaturalist2018 show that our proposed approach outperforms other similar methods on most metrics. In addition, the experimental phenomena we discovered are able to provide new perspectives and theoretical foundations for subsequent studies. The code will be available at https://github.com/mayanbiao1234/Geometric-Prior