Your conditions: 朱立平
  • Lake Variations on Tibetan Plateau of Recent 40 Years and Future Changing Tendency

    Subjects: Other Disciplines >> Synthetic discipline submitted time 2023-03-28 Cooperative journals: 《中国科学院院刊》

    Abstract: The Tibetan Plateau lakes, with more than 50% area of the total lakes in China, are an important part of the Asia Water Tower. From 1970s to 2018, the number and area of lakes increased obviously, but the changing rate was not uniform. Before 1990, the negative balance of lake water storage was caused by low temperature inhibition of melting water. From 1990 to 2000, lake water storage increased associated with increased melting water due to the rising of temperature. After 2000, precipitation was the main factor leading to the increase of lake water storage, but the continuous temperature rising during 2005 and 2013 strengthened evaporation and weakened the increasing rate of lake water storage. Nevertheless, in the central and western Tibetan Plateau, the increase of lake water storage during 2000 and 2013 was mainly contributed by glacier melt water. From 1970s to 2013, the spatial characteristics of the lake water storage changes on the Tibetan Plateau were consistent with that of precipitation in the westerly and Indian monsoon regions. The increase of air temperature and long-wave radiation make the lake water temperature increase obviously, and promote the transmission efficiency of food chain. With the lake water storage increase, the lake water salinity generally decreases, which conduce the increase of lake biological diversity and make the lake ecosystem structure relatively complex. In the next 20 years, the lake water storage in the inland closed lakes of the Tibetan Plateau will continue to increase while the increasing rate will decrease. For the “Asian Water Tower”, the lake study on the Tibetan Plateau should focus on macroscale water storage and water balance, the main physical and chemical properties of lake water and ecosystem parameters, as well as the water cycle process of lake changes in large-scale climate change.

  • 印度季风与西风相互作用在现代青藏高原产生连锁式环境效应

    Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology submitted time 2017-09-20 Cooperative journals: 《中国科学院院刊》

    Abstract:西风与印度季风两大环流是控制青藏高原气候与环境变化的决定性因素。研究显示两大环流的影响范围和程度具有明显的空间分异:基于降水稳定同位素实测与模型模拟发现青藏高原现代西风与印度季风的相互作用特征表现为3种模态,即印度季风模态、西风模态和过渡模态。基于湖泊沉积记录的分析,发现3种模态主控范围在历史时期不断发生变化。3种模态对现代青藏高原环境产生连锁式环境效应,使得该区的冰川、湖泊、生态系统变化具有明显的区域特征,具体表现为印度季风模态的冰川强烈退缩,湖泊趋于萎缩;西风模态的冰川趋于稳定甚至部分出现前进,湖泊趋于扩张;过渡模态的冰川退缩程度减弱,湖泊变化不明显。西风模态的植被返青期提前,印度季风模态的植被返青期推后,而过渡模态的植被过程比较复杂。

  • 从青藏高原到第三极和泛第三极

    Subjects: Environmental Sciences, Resource Sciences >> Environmentology submitted time 2017-09-20 Cooperative journals: 《中国科学院院刊》

    Abstract:青藏高原对我国、亚洲甚至北半球的人类生存环境和可持续发展起着重要的环境和生态屏障作用。以青藏高原为核心的第三极以及受其影响的东亚、南亚、中亚、西亚、中东欧等泛第三极地区,面积约2 000多万平方公里,涵盖20多个国家的30多亿人口,是“一带一路”的核心地带和全球人口分布最密集区。随着“一带一路”重大倡议的推进,泛第三极环境变化的重要性受到全球关注。泛第三极地区已经出现重大资源环境问题,如何保护这一地区资源环境的可持续性是“一带一路”建设实施面临的重大挑战。实施“泛第三极环境变化与绿色丝绸之路建设”专项,将从区域甚至全球尺度深入研究这一地区的资源环境科学问题,前瞻、科学地提出区域可持续发展协同应对战略,为“守护好世界上最后一方净土”和“一带一路”建设服务。