您选择的条件: Jaime Forero-Romero
  • Cosmological constraints from the density gradient weighted correlation function

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The mark weighted correlation function (MCF) $W(s,\mu)$ is a computationally efficient statistical measure which can probe clustering information beyond that of the conventional 2-point statistics. In this work, we extend the traditional mark weighted statistics by using powers of the density field gradient $|\nabla \rho/\rho|^\alpha$ as the weight, and use the angular dependence of the scale-averaged MCFs to constrain cosmological parameters. The analysis shows that the gradient based weighting scheme is statistically more powerful than the density based weighting scheme, while combining the two schemes together is more powerful than separately using either of them. Utilising the density weighted or the gradient weighted MCFs with $\alpha=0.5,1$, we can strengthen the constraint on $\Omega_m$ by factors of 2 or 4, respectively, compared with the standard 2-point correlation function, while simultaneously using the MCFs of the two weighting schemes together can be $1.25$ times more statistically powerful than using the gradient weighting scheme alone. The mark weighted statistics may play an important role in cosmological analysis of future large-scale surveys. Many issues, including the possibility of using other types of weights, the influence of the bias on this statistics, as well as the usage of MCFs in the tomographic Alcock-Paczynski method, are worth further investigations.

  • Cosmic Velocity Field Reconstruction Using AI

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We develop a deep learning technique to infer the non-linear velocity field from the dark matter density field. The deep learning architecture we use is an "U-net" style convolutional neural network, which consists of 15 convolution layers and 2 deconvolution layers. This setup maps the 3-dimensional density field of $32^3$-voxels to the 3-dimensional velocity or momentum fields of $20^3$-voxels. Through the analysis of the dark matter simulation with a resolution of $2 {h^{-1}}{\rm Mpc}$, we find that the network can predict the the non-linearity, complexity and vorticity of the velocity and momentum fields, as well as the power spectra of their value, divergence and vorticity and its prediction accuracy reaches the range of $k\simeq1.4$ $h{\rm Mpc}^{-1}$ with a relative error ranging from 1% to $\lesssim$10%. A simple comparison shows that neural networks may have an overwhelming advantage over perturbation theory in the reconstruction of velocity or momentum fields.