您选择的条件: Eve C. Ostriker
  • 3D Radiation Hydrodynamic Simulations of Gravitational Instability in AGN Accretion Disks: Effects of Radiation Pressure

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We perform 3D radiation hydrodynamic local shearing box simulations to study the outcome of gravitational instability (GI) in optically thick Active Galactic Nuclei (AGN) accretion disks. GI develops when the Toomre parameter QT \leq 1, and may lead to turbulent heating that balances radiative cooling. However, when radiative cooling is too efficient, the disk may undergo runaway gravitational fragmentation. In the fully gas-pressure-dominated case, we confirm the classical result that such a thermal balance holds when the Shakura-Sunyaev viscosity parameter (alpha) due to the gravitationally-driven turbulence is \sim 0.2, corresponding to dimensionless cooling times Omega tcool \sim 5. As the fraction of support by radiation pressure increases, the disk becomes more prone to fragmentation, with a reduced (increased) critical value of alpha (omega tcool). The effect is already significant when the radiation pressure exceeds 10% of the gas pressure, while fully radiation-pressure-dominated disks fragment at Omega tcool <50 . The latter translates to a maximum turbulence level alpha<0.02, comparable to that generated by Magnetorotational Instability (MRI). Our results suggest that gravitationally unstable (QT \sim 1) outer regions of AGN disks with significant radiation pressure (likely for high/near- Eddington accretion rates) should always fragment into stars, and perhaps black holes.

  • Star Formation Laws and Efficiencies across 80 Nearby Galaxies

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We measure empirical relationships between the local star formation rate (SFR) and properties of the star-forming molecular gas on 1.5 kpc scales across 80 nearby galaxies. These relationships, commonly referred to as "star formation laws," aim at predicting the local SFR surface density from various combinations of molecular gas surface density, galactic orbital time, molecular cloud free-fall time, and the interstellar medium dynamical equilibrium pressure. Leveraging a multiwavelength database built for the PHANGS survey, we measure these quantities consistently across all galaxies and quantify systematic uncertainties stemming from choices of SFR calibrations and the CO-to-H$_2$ conversion factors. The star formation laws we examine show 0.3-0.4 dex of intrinsic scatter, among which the molecular Kennicutt-Schmidt relation shows a $\sim$10% larger scatter than the other three. The slope of this relation ranges $\beta\approx0.9{-}1.2$, implying that the molecular gas depletion time remains roughly constant across the environments probed in our sample. The other relations have shallower slopes ($\beta\approx0.6{-}1.0$), suggesting that the star formation efficiency (SFE) per orbital time, the SFE per free-fall time, and the pressure-to-SFR surface density ratio (i.e., the feedback yield) may vary systematically with local molecular gas and SFR surface densities. Last but not least, the shapes of the star formation laws depend sensitively on methodological choices. Different choices of SFR calibrations can introduce systematic uncertainties of at least 10-15% in the star formation law slopes and 0.15-0.25 dex in their normalization, while the CO-to-H$_2$ conversion factors can additionally produce uncertainties of 20-25% for the slope and 0.10-0.20 dex for the normalization.

  • Arkenstone I: A Novel Method for Robustly Capturing High Specific Energy Outflows In Cosmological Simulations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Arkenstone is a new model for multiphase, stellar feedback driven galactic winds designed for inclusion in coarse resolution cosmological simulations. In this first paper of a series, we describe the features that allow Arkenstone to properly treat high specific energy wind components and demonstrate them using idealised non-cosmological simulations of a galaxy with a realistic CGM, using the Arepo code. Hot, fast gas phases with low mass loadings are predicted to dominate the energy content of multiphase outflows. In order to treat the huge dynamic range of spatial scales involved in cosmological galaxy formation at feasible computational expense, cosmological volume simulations typically employ a Lagrangian code or else use adaptive mesh refinement with a quasi-Lagrangian refinement strategy. However, it is difficult to inject a high specific energy wind in a Lagrangian scheme without incurring artificial burstiness. Additionally, the low densities inherent to this type of flow result in poor spatial resolution. Arkenstone addresses these issues with a novel scheme for coupling energy into the ISM/CGM transition region which also provides the necessary level of refinement at the base of the wind. In the absence of our improvements, we show that poor spatial resolution near the sonic point of a hot, fast outflow leads to an underestimation of gas acceleration as the wind propagates. We explore the different mechanisms by which low and high specific energy winds can regulate the SFR of galaxies. In future work, we will demonstrate other aspects of the Arkenstone model.

  • Photochemistry and Heating/Cooling of the Multiphase Interstellar Medium with UV Radiative Transfer for Magnetohydrodynamic Simulations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present an efficient heating/cooling method coupled with chemistry and ultraviolet (UV) radiative transfer, which can be applied to numerical simulations of the interstellar medium (ISM). We follow the time-dependent evolution of hydrogen species (H$_2$, H, H$^+$), assume carbon/oxygen species (C, C$^+$, CO, O, and O$^+$) are in formation-destruction balance given the non-steady hydrogen abundances, and include essential heating/cooling processes needed to capture thermodynamics of all ISM phases. UV radiation from discrete point sources and the diffuse background is followed through adaptive ray tracing and a six-ray approximation, respectively, allowing for H$_2$ self-shielding; cosmic ray (CR) heating and ionization are also included. To validate our methods and demonstrate their application for a range of density, metallicity, and radiation field, we conduct a series of tests, including the equilibrium curves of thermal pressure vs. density, the chemical and thermal structure in photo-dissociation regions, H I-to-H$_2$ transitions, and the expansion of H II regions and radiative supernova remnants. Careful treatment of photochemistry and CR ionization is essential for many aspects of ISM physics, including identifying the thermal pressure at which cold and warm neutral phases co-exist. We caution that many current heating and cooling treatments used in galaxy formation simulations do not reproduce the correct thermal pressure and ionization fraction in the neutral ISM. Our new model is implemented in the MHD code Athena and incorporated in the TIGRESS simulation framework, for use in studying the star-forming ISM in a wide range of environments.

  • Introducing TIGRESS-NCR: I. Co-Regulation of the Multiphase Interstellar Medium and Star Formation Rates

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Massive, young stars are the main source of energy that maintains multiphase structure and turbulence in the interstellar medium (ISM), and without this "feedback" the star formation rate (SFR) would be much higher than is observed. Rapid energy loss in the ISM and efficient energy recovery by stellar feedback lead to co-regulation of SFRs and the ISM state. Realistic approaches to this problem should solve the dynamical evolution of the ISM, including star formation, and the input of feedback energy self-consistently and accurately. Here, we present the TIGRESS-NCR numerical framework, in which UV radiation, supernovae, cooling and heating processes, and gravitational collapse are modeled explicitly. We use an adaptive ray tracing method for UV radiation transfer from star clusters represented by sink particles, accounting for attenuation by dust and gas. We solve photon-driven chemical equations to determine the abundances of H (time-dependent) and C/O-bearing species (steady-state), which then set cooling and heating rates self-consistently. Applying these methods, we present high-resolution magnetohydrodynamics simulations of differentially rotating local galactic disks representing typical conditions of nearby star-forming galaxies. We analyze ISM properties and phase distributions and show good agreement with existing multiwavelength galactic observations. We measure midplane pressure components (turbulent, thermal, and magnetic) and the weight, demonstrating that vertical dynamical equilibrium holds. We quantify the ratios of pressure components to the SFR surface density, which we call the feedback yields. The TIGRESS-NCR framework will allow for a wide range of parameter exploration, including low metallicity system.

  • Molecular Cloud Populations in the Context of Their Host Galaxy Environments: A Multiwavelength Perspective

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present a rich, multiwavelength, multiscale database built around the PHANGS-ALMA CO$\,$(2-1) survey and ancillary data. We use this database to present the distributions of molecular cloud populations and sub-galactic environments in 80 PHANGS galaxies, to characterize the relationship between population-averaged cloud properties and host galaxy properties, and to assess key timescales relevant to molecular cloud evolution and star formation. We show that PHANGS probes a wide range of kpc-scale gas, stellar, and star formation rate (SFR) surface densities, as well as orbital velocities and shear. The population-averaged cloud properties in each aperture correlate strongly with both local environmental properties and host galaxy global properties. Leveraging a variable selection analysis, we find that the kpc-scale surface densities of molecular gas and SFR tend to possess the most predictive power for the population-averaged cloud properties. Once their variations are controlled for, galaxy global properties contain little additional information, which implies that the apparent galaxy-to-galaxy variations in cloud populations are likely mediated by kpc-scale environmental conditions. We further estimate a suite of important timescales from our multiwavelength measurements. The cloud-scale free-fall time and turbulence crossing time are ${\sim}5{-}20$ Myr, comparable to previous cloud lifetime estimates. The timescales for orbital motion, shearing, and cloud-cloud collisions are longer, ${\sim}100$ Myr. The molecular gas depletion time is $1{-}3$ Gyr and shows weak to no correlations with the other timescales in our data. We publish our measurements online and expect them to have broad utility to future studies of molecular clouds and star formation.