您选择的条件: Wen Zhao
  • Synergy between CSST galaxy survey and gravitational-wave observation: Inferring the Hubble constant from dark standard sirens

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Gravitational waves (GWs) from compact binary coalescences encode the absolute luminosity distances of GW sources. Once the redshifts of GW sources are known, one can use the distance-redshift relation to constrain cosmological parameters. One way to obtain the redshifts is to localize GW sources by GW observations and then use galaxy catalogs to determine redshifts from a statistical analysis of redshift information of the potential host galaxies, and such GW data are commonly referred to as dark sirens. The third-generation (3G) GW detectors are planned to work in the 2030s and will observe numerous compact binary coalescences. Using these GW events as dark sirens requires high-quality galaxy catalogs from future sky survey projects. The China Space Station Telescope (CSST) will be launched in 2024 and will observe billions of galaxies within a 17500 deg$^2$ survey area up to $z\sim 4$, providing photometric and spectroscopic galaxy catalogs. In this work, we simulate the CSST galaxy catalog and the 5-year GW data, and combine them to infer the Hubble constant ($H_0$). Our results show that the measurement precision of $H_0$ could reach better than $0.005\%$, which is an astonishing precision for the Hubble constant measurement. We conclude that the synergy between the 3G GW detectors and CSST will be of far-reaching importance in dark-siren cosmology.

  • Scalar quadratic maximum likelihood estimators for the CMB cross power spectrum

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Estimating the cross-correlation power spectra of cosmic microwave background (CMB), in particular, the T B and EB spectra, is important for testing parity symmetry in cosmology and diagnosing insidious instruments systematics. The Quadratic Maximum Likelihood (QML) estimator provides the optimal estimates of power spectra, but it is computationally very expensive. The hybrid pseudo-Cl estimator is computationally fast but performs poorly on large scales. As a natural extension of previous work (Chen et al. 2021), in this article, we present a new unbiased estimator based on the Smith-Zaldarriaga (SZ) approach of E-B separation and scalar QML approach to reconstruct the cross-correlation power spectrum, called QML-SZ estimator. Our new estimator relies on the ability to construct scalar maps, which allows us to use a scalar QML estimator to obtain the cross-correlation power spectrum. By reducing the pixel number and algorithm complexity, the computational cost is nearly one order of magnitude smaller and the running time is nearly two orders of magnitude faster in the test situations.

  • Polarized primordial gravitational waves in spatial covariant gravities

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The spatial covariant gravities provide a natural way to including odd-order spatial derivative terms into the gravitational action, which breaks the parity symmetry at gravitational sector. A lot of parity-violating scalar-tensor theories can be mapped to the spatial covariant framework by imposing the unitary gauge. This provides us with a general framework for exploring the parity-violating effects in primordial gravitational waves (PGWs). The main purpose of this paper is to investigate the polarization of PGWs in the spatial covariant gravities and their possible observational effects. To this end, we first construct the approximate analytical solution to the mode function of the PGWs during the slow-roll inflation by using the uniform asymptotic approximation. With the approximate solution, we calculate explicitly the power spectrum and the corresponding circular polarization of the PGWs analytically. It is shown that the new contributions to power spectrum from spatial covariant gravities contain two parts, one from the parity-preserving terms and the other from the parity-violating terms. While the parity-preserving terms can only affect the overall amplitudes of PGWs, the parity-violating terms induce nonzero circular polarization of PGWs, i.e., the left-hand and right-hand polarization modes of GWs have different amplitudes. The observational implications of this nonzero circular polarization is also briefly discussed.

  • Fast scalar quadratic maximum likelihood estimators for the CMB B-mode power spectrum

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Constructing a fast and efficient estimator for the B-mode power spectrum of cosmic microwave background (CMB) is of critical importance for CMB science. For a general CMB survey, the Quadratic Maximum Likelihood (QML) estimator for CMB polarization has been proved to be the optimal estimator with minimal uncertainties, but it is computationally very expensive. In this article, we propose two new QML methods for B-mode power spectrum estimation. We use the Smith-Zaldarriaga approach to prepare pure-B mode map, and E-mode recycling method to obtain a leakage free B-mode map. We then use the scalar QML estimator to analyze the scalar pure-B map (QML-SZ) or B-mode map (QML-TC). The QML-SZ and QML-TC estimators have similar error bars as the standard QML estimators but their computational cost is nearly one order of magnitude smaller. The basic idea is that one can construct the pure B-mode CMB map by using the E-B separation method proposed by Smith-Zaldarriaga (SZ) or the one considering the template cleaning (TC) technique, then apply QML estimator to these scalar fields. By simulating potential observations of space-based and ground-based detectors, we test the reliability of these estimators by comparing them with the corresponding results of the traditional QML estimator and the pure B-mode pseudo-Cl estimator.

  • Is the Observable Universe Consistent with the Cosmological Principle?

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Cosmological Principle (CP) -- the notion that the Universe is spatially isotropic and homogeneous on large scales -- underlies a century of progress in cosmology. It is conventionally formulated through the Friedmann-Lema\^itre-Robertson-Walker (FLRW) cosmologies as the spacetime metric, and culminates in the successful and highly predictive $\Lambda$-Cold-Dark-Matter ($\Lambda$CDM) model. Yet, tensions have emerged within the $\Lambda$CDM model, most notably a statistically significant discrepancy in the value of the Hubble constant, $H_0$. Since the notion of cosmic expansion determined by a single parameter is intimately tied to the CP, implications of the $H_0$ tension may extend beyond $\Lambda$CDM to the CP itself. This review surveys current observational hints for deviations from the expectations of the CP, highlighting synergies and disagreements that warrant further study. Setting aside the debate about individual large structures, potential deviations from the CP include variations of cosmological parameters on the sky, discrepancies in the cosmic dipoles, and mysterious alignments in quasar polarizations and galaxy spins. While it is possible that a host of observational systematics are impacting results, it is equally plausible that precision cosmology may have outgrown the FLRW paradigm, an extremely pragmatic but non-fundamental symmetry assumption.

  • The effects of peculiar velocities on the morphological properties of large-scale structure

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: It is known that the large-scale structure (LSS) mapped by a galaxy redshift survey is subject to distortions by galaxies' peculiar velocities. Besides the signatures generated in common N-point statistics, such as the anisotropy in the galaxy 2-point correlation function, the peculiar velocities also induce distinct features in LSS's morphological properties, which are fully described by four Minkowski functionals (MFs), i.e., the volume, surface area, integrated mean curvature and Euler characteristic (or genus). In this work, by using large suite of N-body simulations, we present and analyze these important features in the MFs of LSS on both (quasi-)linear and non-linear scales, with a focus on the latter. We also find the MFs can give competitive constraints on cosmological parameters compared to the power spectrum, probablly due to the non-linear information contained. For galaxy number density similar to the DESI BGS galaxies, the constraint on $\sigma_8$ from the MFs with one smoothing scale can be better by $\sim 50\%$ than from the power spectrum. These findings are important for the cosmological applications of MFs of LSS, and probablly open up a new avenue for studying the peculiar velocity field itself.

  • Performance forecasts for the primordial gravitational wave detection pipelines for AliCPT-1

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: AliCPT is the first Chinese cosmic microwave background (CMB) experiment which will make the most precise measurements of the CMB polarization in the northern hemisphere. The key science goal for AliCPT is the detection of primordial gravitational waves (PGWs). It is well known that an epoch of cosmic inflation, in the very early universe, can produce PGWs, which leave an imprint on the CMB in form of odd parity $B$-mode polarization. In this work, we study the performance of the component separation and parameter estimation pipelines in context of constraining the value of the tensor-to-scalar ratio. Based on the simulated data for one observation season, we compare five different pipelines with different working principles. Three pipelines perform component separation at map or spectra level before estimating $r$ from the cleaned spectra, while the other two pipelines performs a global fit for both foreground parameters and $r$. We also test different methods to account for the effects of time stream filtering systematics. This work shows that our pipelines provide consistent and robust constraints on the tensor-to-scalar ratio and a consistent sensitivity $\sigma(r) \sim 0.02$. This showcases the potential of precise $B$-mode polarization measurement with AliCPT-1. AliCPT will provide a powerful opportunity to detect PGWs, which is complementary with various ground-based CMB experiments in the southern hemisphere.

  • Wave effect of gravitational waves intersected with a microlens field: a new algorithm and supplementary study

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The increase in gravitational wave (GW) events has allowed receiving strong lensing image pairs of GWs. However, the wave effect (diffraction and interference) due to the microlens field contaminates the parameter estimation of the image pair, which may lead to a misjudgment of strong lensing signals. To quantify the influence of the microlens field, researchers need a large sample of statistical research. Nevertheless, due to the oscillation characteristic, the Fresnel-Kirchhoff diffraction integral's computational time hinders this aspect's study. Although many algorithms are available, most cannot be well applied to the case where the microlens field is embedded in galaxy/galaxy clusters. This work proposes a faster and more accurate algorithm for studying the wave optics effect of microlenses embedded in different types of strong lensing images. Additionally, we provide a quantitative estimation criterion for the lens plane boundary for the Fresnel-Kirchhoff diffraction integral. This algorithm can significantly facilitate the study of wave optics, particularly in the case of microlens fields embedded in galaxy/galaxy clusters.

  • Polarized primordial gravitational waves in spatial covariant gravities

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The spatial covariant gravities provide a natural way to including odd-order spatial derivative terms into the gravitational action, which breaks the parity symmetry at gravitational sector. A lot of parity-violating scalar-tensor theories can be mapped to the spatial covariant framework by imposing the unitary gauge. This provides us with a general framework for exploring the parity-violating effects in primordial gravitational waves (PGWs). The main purpose of this paper is to investigate the polarization of PGWs in the spatial covariant gravities and their possible observational effects. To this end, we first construct the approximate analytical solution to the mode function of the PGWs during the slow-roll inflation by using the uniform asymptotic approximation. With the approximate solution, we calculate explicitly the power spectrum and the corresponding circular polarization of the PGWs analytically. It is shown that the new contributions to power spectrum from spatial covariant gravities contain two parts, one from the parity-preserving terms and the other from the parity-violating terms. While the parity-preserving terms can only affect the overall amplitudes of PGWs, the parity-violating terms induce nonzero circular polarization of PGWs, i.e., the left-hand and right-hand polarization modes of GWs have different amplitudes. The observational implications of this nonzero circular polarization is also briefly discussed.

  • Synergy between CSST galaxy survey and gravitational-wave observation: Inferring the Hubble constant from dark standard sirens

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Gravitational waves (GWs) from compact binary coalescences encode the absolute luminosity distances of GW sources. Once the redshifts of GW sources are known, one can use the distance-redshift relation to constrain cosmological parameters. One way to obtain the redshifts is to localize GW sources by GW observations and then use galaxy catalogs to determine redshifts from a statistical analysis of redshift information of the potential host galaxies, and such GW data are commonly referred to as dark sirens. The third-generation (3G) GW detectors are planned to work in the 2030s and will observe numerous compact binary coalescences. Using these GW events as dark sirens requires high-quality galaxy catalogs from future sky survey projects. The China Space Station Telescope (CSST) will be launched in 2024 and will observe billions of galaxies within a 17500 deg$^2$ survey area up to $z\sim 4$, providing photometric and spectroscopic galaxy catalogs. In this work, we simulate the CSST galaxy catalog and the 5-year GW data, and combine them to infer the Hubble constant ($H_0$). Our results show that the measurement precision of $H_0$ could reach better than $0.005\%$, which is an astonishing precision for the Hubble constant measurement. We conclude that the synergy between the 3G GW detectors and CSST will be of far-reaching importance in dark-siren cosmology.

  • Forecasts of CMB lensing reconstruction of AliCPT-1 from the foreground cleaned polarization data

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Cosmic microwave background radiation (CMB) observations are unavoidably contaminated by emission from various extra-galactic foregrounds, which must be removed to obtain reliable measurements of the cosmological signal. In this paper, we demonstrate CMB lensing reconstruction in AliCPT-1 after foreground removal, combine the two bands of AliCPT-1 (90 and 150~GHz) with Planck HFI bands (100, 143, 217 and 353~GHz) and with the WMAP-K band (23~GHz). In order to balance contamination by instrumental noise and foreground residual bias, we adopt the Needlet Internal Linear Combination (NILC) method to clean the E-map and the constrained Internal Linear Combination (cILC) method to clean the B-map. The latter utilizes additional constraints on average frequency scaling of the dust and synchrotron to remove foregrounds at the expense of somewhat noisier maps. Assuming 4 modules observing 1 season from simulation data, the resulting effective residual noise in E- and B-map are roughly $15~\mu{\rm K}\cdot{\rm arcmin}$ and $25~\mu{\rm K}\cdot{\rm arcmin}$, respectively. As a result, the CMB lensing reconstruction signal-to-noise ratio (SNR) from polarization data is about SNR$\,\approx\,$4.5. This lensing reconstruction capability is comparable to that of other stage-III small aperture millimeter CMB telescopes.

  • Forecasts of CMB lensing reconstruction of AliCPT-1 from the foreground cleaned polarization data

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Cosmic microwave background radiation (CMB) observations are unavoidably contaminated by emission from various extra-galactic foregrounds, which must be removed to obtain reliable measurements of the cosmological signal. In this paper, we demonstrate CMB lensing reconstruction in AliCPT-1 after foreground removal, combine the two bands of AliCPT-1 (90 and 150~GHz) with Planck HFI bands (100, 143, 217 and 353~GHz) and with the WMAP-K band (23~GHz). In order to balance contamination by instrumental noise and foreground residual bias, we adopt the Needlet Internal Linear Combination (NILC) method to clean the E-map and the constrained Internal Linear Combination (cILC) method to clean the B-map. The latter utilizes additional constraints on average frequency scaling of the dust and synchrotron to remove foregrounds at the expense of somewhat noisier maps. Assuming 4 modules observing 1 season from simulation data, the resulting effective residual noise in E- and B-map are roughly $15~\mu{\rm K}\cdot{\rm arcmin}$ and $25~\mu{\rm K}\cdot{\rm arcmin}$, respectively. As a result, the CMB lensing reconstruction signal-to-noise ratio (SNR) from polarization data is about SNR$\,\approx\,$4.5. This lensing reconstruction capability is comparable to that of other stage-III small aperture millimeter CMB telescopes.

  • Multi-messenger Detection Rates and distributions of Binary Neutron Star Mergers and Their Cosmological Implications

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The gravitational-wave (GW) events, produced by the coalescence of binary neutron-stars (BNS), can be treated as the standard sirens to probe the expansion history of the Universe, if their redshifts could be determined from the electromagnetic observations. For the high-redshift ($z\gtrsim 0.1$) events, the short $\gamma$-ray bursts (sGRBs) and the afterglows are always considered as the primary electromagnetic counterparts. In this paper, by investigating various models of sGRBs and afterglows, we discuss the rates and distributions of BNS mergers' multi-messenger observations with GW detectors in second-generation (2G), 2.5G, 3G era with the detectable sGRBs and the afterglows. For instance, for Cosmic Explorer GW detector, the rate is about (300-3500) per year with GECAM-like detector for $\gamma$-ray emissions and LSST/WFST detector for optical afterglows. In addition, we find these events have the redshifts $z\lesssim 2$ and the inclination angles $\iota\lesssim 20^{\circ}$. These results justify the rough estimation in previous works. Considering these events as standard sirens to constrain the equation-of-state parameters of dark energy $w_{0}$ and $w_{a}$, we obtain the potential constraints of $\Delta w_{0}\simeq 0.02-0.05$ and $\Delta w_{a}\simeq 0.1-0.4$.

  • Forecasts on CMB lensing observations with AliCPT-1

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: AliCPT-1 is the first Chinese CMB experiment aiming for high precision measurement of Cosmic Microwave Background B-mode polarization. The telescope, currently under deployment in Tibet, will observe in two frequency bands centered at 90 and 150 GHz. We forecast the CMB lensing reconstruction, lensing-galaxy as well as lensing-CIB (Cosmic Infrared Background) cross correlation signal-to-noise ratio (SNR) for AliCPT-1. We consider two stages with different integrated observation time, namely "4 module*yr" (first stage) and "48 module*yr" (final stage). For lensing reconstruction, we use three different quadratic estimators, namely temperature-only, polarization-only and minimum-variance estimators, using curved sky geometry. We take into account the impact of inhomogeneous hit counts as well as of the mean-field bias due to incomplete sky coverage. In the first stage, our results show that the 150 GHz channel is able to measure the lensing signal at $15\sigma$ significance with the minimum-variance estimator. In the final stage, the measurement significance will increase to $31\sigma$. We also combine the two frequency data in the harmonic domain to optimize the SNR. Our result show that the coadding procedure can significantly reduce the reconstruction bias in the multiple range l>800. Thanks to the high quality of the polarization data in the final stage of AliCPT-1, the EB estimator will dominate the lensing reconstruction in this stage. We also estimate the SNR of cross-correlations between AliCPT-1 CMB lensing and other tracers of the large scale structure of the universe. For its cross-correlation with DESI galaxies/quasars, we report the cross-correlation SNR = 10-20 for the 4 redshift bins at 0.05展开 -->

  • Propagation of temporal mode multiplexed optical fields in fibers: influence of dispersion

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Exploiting two interfering fields which are initially in the same temporal mode but with the spectra altered by propagating through different fibers, we characterize how the spectra of temporal modes changes with the fiber induced dispersion by measuring the fourth-order interference when the order number and bandwidth of temporal modes are varied. The experiment is done by launching a pulsed field in different temporal modes into an unbalanced Mach-Zehnder interferometer, in which the fiber lengths in two arms are different. The results show that the mode mismatch of two interfering fields, reflected by the visibility and pattern of interference, is not only dependent upon the amount of unbalanced dispersion but also related to the order number of temporal mode. In particular, the two interfering fields may become orthogonal under a modest amount of unbalanced dispersion when the mode number of the fields is $k\geq2$. Moreover, we discuss how to recover the spectrally distorted temporal mode by measuring and compensating the transmission induced dispersion. Our investigation paves the way for further investigating the distribution of temporally multiplexed quantum states in fiber network.