您选择的条件: J. N. H. S. Aditya
  • Does a radio jet drive the massive multi-phase outflow in the ultra-luminous infrared galaxy IRAS 10565+2448?

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present new upgraded Giant Metrewave Radio Telescope (uGMRT) HI 21-cm observations of the ultra-luminous infrared galaxy IRAS 10565+2448, previously reported to show blueshifted, broad, and shallow HI absorption indicating an outflow. Our higher spatial resolution observations have localised this blueshifted outflow, which is $\sim$ 1.36 kpc southwest of the radio centre and has a blueshifted velocity of $\sim 148\,\rm km\,s^{-1}$ and a full width at half maximum (FWHM) of $\sim 581\,\rm km\,s^{-1}$. The spatial extent and kinematic properties of the HI outflow are consistent with the previously detected cold molecular outflows in IRAS 10565+2448, suggesting that they likely have the same driving mechanism and are tracing the same outflow. By combining the multi-phase gas observations, we estimate a total outflowing mass rate of at least $140\, \rm M_\odot \,yr^{-1}$ and a total energy loss rate of at least $8.9\times10^{42}\,\rm erg\,s^{-1}$, where the contribution from the ionised outflow is negligible, emphasising the importance of including both cold neutral and molecular gas when quantifying the impact of outflows. We present evidence of the presence of a radio jet and argue that this may play a role in driving the observed outflows. The modest radio luminosity $L_{\rm1.4GHz}$ $\sim1.3\times10^{23}\,{\rm W\,Hz^{-1}}$ of the jet in IRAS 10565+2448 implies that the jet contribution to driving outflows should not be ignored in low radio luminosity AGN.

  • Does a radio jet drive the massive multi-phase outflow in the ultra-luminous infrared galaxy IRAS 10565+2448?

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present new upgraded Giant Metrewave Radio Telescope (uGMRT) HI 21-cm observations of the ultra-luminous infrared galaxy IRAS 10565+2448, previously reported to show blueshifted, broad, and shallow HI absorption indicating an outflow. Our higher spatial resolution observations have localised this blueshifted outflow, which is $\sim$ 1.36 kpc southwest of the radio centre and has a blueshifted velocity of $\sim 148\,\rm km\,s^{-1}$ and a full width at half maximum (FWHM) of $\sim 581\,\rm km\,s^{-1}$. The spatial extent and kinematic properties of the HI outflow are consistent with the previously detected cold molecular outflows in IRAS 10565+2448, suggesting that they likely have the same driving mechanism and are tracing the same outflow. By combining the multi-phase gas observations, we estimate a total outflowing mass rate of at least $140\, \rm M_\odot \,yr^{-1}$ and a total energy loss rate of at least $8.9\times10^{42}\,\rm erg\,s^{-1}$, where the contribution from the ionised outflow is negligible, emphasising the importance of including both cold neutral and molecular gas when quantifying the impact of outflows. We present evidence of the presence of a radio jet and argue that this may play a role in driving the observed outflows. The modest radio luminosity $L_{\rm1.4GHz}$ $\sim1.3\times10^{23}\,{\rm W\,Hz^{-1}}$ of the jet in IRAS 10565+2448 implies that the jet contribution to driving outflows should not be ignored in low radio luminosity AGN.

  • Is the X-ray bright z = 5.5 quasar SRGE J170245.3+130104 a blazar?

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Jets may have contributed to promoting the growth of seed black holes in the early Universe, and thus observations of radio-loud high-redshift quasars are crucial to understanding the growth and evolution of the early supermassive black holes. Here we report the radio properties of an X-ray bright $z=5.5$ quasar, SRGE J170245.3+130104 (J1702+1301). Our high-resolution radio images reveal the radio counterpart at the optical position of J1702+1301, while another radio component is also detected at $\sim$23.5\arcsec\ to the southwest. Our analysis suggests that this southwest component is associated with a foreground galaxy at $z\approx 0.677$, which is mixed with J1702+1301 in low-frequency low-resolution radio images. After removing the contamination from this foreground source, we recalculated the radio loudness of J1702+1301 to be $R>$1100, consistent with those of blazars. J1702+1301 exhibits a flat radio spectrum ($\alpha = -0.17 \pm 0.05$, $S \propto \nu^\alpha$) between 0.15 and 5 GHz; above 5 GHz, it shows a rising spectrum shape, and the spectral index $\alpha^{8.2}_{4.7}$ appears to be correlated with the variation of the flux density: in burst states, $\alpha^{8.2}_{4.7}$ becomes larger. J1702+1301 displays distinct radio variability on timescales from weeks to years in the source's rest frame. These radio properties, including high radio loudness, rising spectrum, and rapid variability, tend to support it as a blazar.

  • Radio observations of four active galactic nuclei hosting intermediate-mass black hole candidates: studying the outflow activity and evolution

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Observational searches for intermediate-mass black holes (IMBHs; $10^2 - 10^6$ $M_\odot$) include relatively isolated dwarf galaxies. For those that host active galactic nuclei (AGNs), the IMBH nature may be discerned through the accretion - jet activity. We present radio observations of four AGN-hosting dwarf galaxies (which potentially harbor IMBHs). Very large array (VLA) observations indicate steep spectra (indices of $-$0.63 to $-$1.05) between 1.4 and 9 GHz. A comparison with the 9 GHz in-band spectral index however shows a steepening for GH047 and GH158 (implying older/relic emission) and flattening for GH106 and GH163 (implying recent activity). Overlapping emission regions in the VLA 1.4 GHz and our very long baseline array (VLBA) 1.5 GHz observations, and possibly symmetric pc-scale extensions are consistent with recent activity in the latter two. Using the compact VLBA radio luminosity, X-ray luminosity (probing the accretion activity) and the black hole masses, all AGNs are found to lie on the empirical fundamental plane relation. The four AGN are radio quiet with relatively higher Eddington ratios ($0.04 - 0.32$) and resemble the X-ray binaries during spectral state transitions that entail an outflow ejection. Furthermore, the radio to X-ray luminosity ratio $\log{R_\mathrm{X}}$ of $-3.9$ to $-5.6$ in these four sources support the scenarios including corona mass ejection from accretion disk and wind activity. The growth to kpc-scales likely proceeds along a trajectory similar to young AGNs and peaked spectrum sources. The above complex clues can thus aid in the detection and monitoring of IMBHs in the nearby Universe.

  • Radio observations of four active galactic nuclei hosting intermediate-mass black hole candidates: studying the outflow activity and evolution

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Observational searches for intermediate-mass black holes (IMBHs; $10^2 - 10^6$ $M_\odot$) include relatively isolated dwarf galaxies. For those that host active galactic nuclei (AGNs), the IMBH nature may be discerned through the accretion - jet activity. We present radio observations of four AGN-hosting dwarf galaxies (which potentially harbor IMBHs). Very large array (VLA) observations indicate steep spectra (indices of $-$0.63 to $-$1.05) between 1.4 and 9 GHz. A comparison with the 9 GHz in-band spectral index however shows a steepening for GH047 and GH158 (implying older/relic emission) and flattening for GH106 and GH163 (implying recent activity). Overlapping emission regions in the VLA 1.4 GHz and our very long baseline array (VLBA) 1.5 GHz observations, and possibly symmetric pc-scale extensions are consistent with recent activity in the latter two. Using the compact VLBA radio luminosity, X-ray luminosity (probing the accretion activity) and the black hole masses, all AGNs are found to lie on the empirical fundamental plane relation. The four AGN are radio quiet with relatively higher Eddington ratios ($0.04 - 0.32$) and resemble the X-ray binaries during spectral state transitions that entail an outflow ejection. Furthermore, the radio to X-ray luminosity ratio $\log{R_\mathrm{X}}$ of $-3.9$ to $-5.6$ in these four sources support the scenarios including corona mass ejection from accretion disk and wind activity. The growth to kpc-scales likely proceeds along a trajectory similar to young AGNs and peaked spectrum sources. The above complex clues can thus aid in the detection and monitoring of IMBHs in the nearby Universe.

  • A compact symmetric radio source born at one-tenth the current age of the Universe

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Studies of high redshift radio galaxies can shed light on the activity of active galactic nuclei (AGN) in massive elliptical galaxies, and on the assembly and evolution of galaxy clusters in the Universe. J1606+3124 has been tentatively identified as a radio galaxy at a redshift of 4.56, at an era of one-tenth of the current age of the Universe. Very long baseline interferometry (VLBI) images show a compact triple structure with a size of 68 parsecs. The radio properties of J1606+3124, including the edge-brightening morphology, peaked GHz radio spectrum, slow variability, and low jet speed, consistently indicate that it is a compact symmetric object (CSO). The radio source size and expansion rate of the hotspots suggest that J1606+3124 is a young (kinematic age of ~3600 years) radio source. Infrared observations reveal a gas- and dust-rich host galaxy environment, which may hinder the growth of the jet; however, the ultra-high jet power of J1606+3124 gives it an excellent chance to grow into a large-scale double-lobe radio galaxy. If its redshift and galaxy classification can be confirmed by further optical spectroscopic observations, J1606+3124 will be the highest redshift CSO galaxy known to date.

  • Is the X-ray bright z = 5.5 quasar SRGE J170245.3+130104 a blazar?

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Jets may have contributed to promoting the growth of seed black holes in the early Universe, and thus observations of radio-loud high-redshift quasars are crucial to understanding the growth and evolution of the early supermassive black holes. Here we report the radio properties of an X-ray bright $z=5.5$ quasar, SRGE J170245.3+130104 (J1702+1301). Our high-resolution radio images reveal the radio counterpart at the optical position of J1702+1301, while another radio component is also detected at $\sim$23.5\arcsec\ to the southwest. Our analysis suggests that this southwest component is associated with a foreground galaxy at $z\approx 0.677$, which is mixed with J1702+1301 in low-frequency low-resolution radio images. After removing the contamination from this foreground source, we recalculated the radio loudness of J1702+1301 to be $R>$1100, consistent with those of blazars. J1702+1301 exhibits a flat radio spectrum ($\alpha = -0.17 \pm 0.05$, $S \propto \nu^\alpha$) between 0.15 and 5 GHz; above 5 GHz, it shows a rising spectrum shape, and the spectral index $\alpha^{8.2}_{4.7}$ appears to be correlated with the variation of the flux density: in burst states, $\alpha^{8.2}_{4.7}$ becomes larger. J1702+1301 displays distinct radio variability on timescales from weeks to years in the source's rest frame. These radio properties, including high radio loudness, rising spectrum, and rapid variability, tend to support it as a blazar.