您选择的条件: Anzhong Wang
  • Non-existence of quantum black hole horizons in the improved dynamics approach

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In this paper, we study the quantum geometric effects near the locations that black hole horizons used to appear in Einstein's classical theory within the framework of the improved dynamic approach, in which the two polymerization parameters of the Kantowski-Sachs spacetime are functions of the phase space variables. Our detailed analysis shows that the effects are so strong that black hole horizons of the effective quantum theory do not exist any longer, and the corresponding Kantowski-Sachs model now describes the entire spacetime of the trapped region, instead of being only the internal region of a black hole, as it is usually expected in loop quantum gravity.

  • Understanding quantum black holes from quantum reduced loop gravity

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We systematically study the top-down model of loop quantum black holes (LQBHs), recently derived by Alesci, Bahrami and Pranzetti (ABP). To understand the structure of the model, we first derive several well-known LQBH solutions by taking proper limits. These include the B\"ohmer-Vandersloot and Ashtekar-Olmedo-Singh models, which were all obtained by the so-called bottom-up polymerizations within the framework of the minisuperspace quantizations. Then, we study the ABP model, and find that the inverse volume corrections become important only when the radius of the two-sphere is of the Planck size. For macroscopic black holes, the minimal radius obtained at the transition surface is always much larger than the Planck scale, and hence these corrections are always sub-leading. The transition surface divides the whole spacetime into two regions, and in one of them the spacetime is asymptotically Schwarzschild-like, while in the other region, the asymptotical behavior sensitively depends on the ratio of two spin numbers involved in the model, and can be divided into three different classes. In one class, the spacetime in the 2-planes orthogonal to the two spheres is asymptotically flat, and in the second one it is not even conformally flat, while in the third one it can be asymptotically conformally flat by properly choosing the free parameters of the model. In the latter, it is asymptotically de Sitter. However, in any of these three classes, sharply in contrast to the models obtained by the bottom-up approach, the spacetime is already geodesically complete, and no additional extensions are needed in both sides of the transition surface. In particular, identical multiple black hole and white hole structures do not exist.

  • Polarized primordial gravitational waves in spatial covariant gravities

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The spatial covariant gravities provide a natural way to including odd-order spatial derivative terms into the gravitational action, which breaks the parity symmetry at gravitational sector. A lot of parity-violating scalar-tensor theories can be mapped to the spatial covariant framework by imposing the unitary gauge. This provides us with a general framework for exploring the parity-violating effects in primordial gravitational waves (PGWs). The main purpose of this paper is to investigate the polarization of PGWs in the spatial covariant gravities and their possible observational effects. To this end, we first construct the approximate analytical solution to the mode function of the PGWs during the slow-roll inflation by using the uniform asymptotic approximation. With the approximate solution, we calculate explicitly the power spectrum and the corresponding circular polarization of the PGWs analytically. It is shown that the new contributions to power spectrum from spatial covariant gravities contain two parts, one from the parity-preserving terms and the other from the parity-violating terms. While the parity-preserving terms can only affect the overall amplitudes of PGWs, the parity-violating terms induce nonzero circular polarization of PGWs, i.e., the left-hand and right-hand polarization modes of GWs have different amplitudes. The observational implications of this nonzero circular polarization is also briefly discussed.

  • Rotations of the polarization of a gravitational wave propagating in Universe

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In this paper, we study the polarization of a gravitational wave (GW) emitted by an astrophysical source at a cosmic distance propagating through the Friedmann-Lema\^itre-Robertson-Walk universe. By considering the null geodesic deviations, we first provide a definition of the polarization of the GW in terms of the Weyl scalars with respect to a parallelly-transported frame along the null geodesics, and then show explicitly that, due to different effects of the expansion of the universe on the two polarization modes, the so-called "+" and "$\times$" modes, the polarization angle of the GW changes generically, when it is propagating through the curved background. By direct computations of the polarization angle, we show that different epochs, radiation-, matter- and $\Lambda$-dominated, have different effects on the polarization. In particular, for a GW emitted by a binary system, we find explicitly the relation between the change of the polarization angle $|\Delta \varphi|$ and the redshift $z_s$ of the source in different epochs. In the $\Lambda$CDM model, we find that the order of $|\Delta \varphi|{\eta_0 F}$ is typically $O(10^{-3})$ to $O(10^3)$, depending on the values of $z_s$, where $\eta_0$ is the (comoving) time of the current universe, and $F\equiv\Big(\frac{5}{256}\frac{1}{\tau_{obs}}\Big)^{3/8}\left(G_NM_c\right)^{-5/8}$ with $\tau_{obs}$ and $M_c$ being, respectively, the time to coalescence in the observer's frame and the chirp mass of the binary system.

  • Phenomenological implications of modified loop cosmologies: an overview

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In this paper, we first provide a brief review of the effective dynamics of two recently well-studied models of modified loop quantum cosmologies (mLQCs), which arise from different regularizations of the Hamiltonian constraint and show the robustness of a generic resolution of the big bang singularity, replaced by a quantum bounce due to non-perturbative Planck scale effects. As in loop quantum cosmology (LQC), in these modified models the slow-roll inflation happens generically. We consider the cosmological perturbations following the dressed and hybrid approaches and clarify some subtle issues regarding the ambiguity of the extension of the effective potential of the scalar perturbations across the quantum bounce, and the choice of initial conditions. Both of the modified regularizations yield primordial power spectra that are consistent with current observations for the Starobinsky potential within the framework of either the dressed or the hybrid approach. But differences in primordial power spectra are identified among the mLQCs and LQC. In addition, for mLQC-I, striking differences arise between the dressed and hybrid approaches in the infrared and oscillatory regimes. While the differences between the two modified models can be attributed to differences in the Planck scale physics, the permissible choices of the initial conditions and the differences between the two perturbation approaches have been reported for the first time. All these differences, due to either the different regularizations or the different perturbation approaches in principle can be observed in terms of non-Gaussianities.

  • Power Spectra of Slow-Roll inflation in the consistent $D\to 4$ Einstein-Gauss-Bonnet gravity

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The slow-roll inflation which took place at extremely high energy regimes is in general believed to be sensitive to the high-order curvature corrections to the classical general relativity (GR). In this paper, we study the effects of the high-order curvature term, the Gauss-Bonnet (GB) term, on the primordial scalar and tensor spectra of the slow-roll inflation in the consistent $D \to 4$ Einstein Gauss-Bonnet (4EGB) gravity. The GB term is incorporated into gravitational dynamics via the re-scaling of the GB coupling constant $\alpha \to \alpha/(D-4)$ in the limit $ D\to 4$. For our purpose, we calculate explicitly the primordial scalar and tensor power spectra with GB corrections accurate to the next-to-leading order in the slow-roll approximation in the slow-roll inflation by using the third-order uniform asymptotic approximation method. The corresponding spectral indices and their runnings of the spectral indices for both the scalar and tensor perturbations as well as the ratio between the scalar and tensor spectra are also calculated up to the next-to-leading order in the slow-roll expansions. These results represent the most accurate results obtained so far in the literature.

  • Power Spectra of Slow-Roll inflation in the consistent $D\to 4$ Einstein-Gauss-Bonnet gravity

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The slow-roll inflation which took place at extremely high energy regimes is in general believed to be sensitive to the high-order curvature corrections to the classical general relativity (GR). In this paper, we study the effects of the high-order curvature term, the Gauss-Bonnet (GB) term, on the primordial scalar and tensor spectra of the slow-roll inflation in the consistent $D \to 4$ Einstein Gauss-Bonnet (4EGB) gravity. The GB term is incorporated into gravitational dynamics via the re-scaling of the GB coupling constant $\alpha \to \alpha/(D-4)$ in the limit $ D\to 4$. For our purpose, we calculate explicitly the primordial scalar and tensor power spectra with GB corrections accurate to the next-to-leading order in the slow-roll approximation in the slow-roll inflation by using the third-order uniform asymptotic approximation method. The corresponding spectral indices and their runnings of the spectral indices for both the scalar and tensor perturbations as well as the ratio between the scalar and tensor spectra are also calculated up to the next-to-leading order in the slow-roll expansions. These results represent the most accurate results obtained so far in the literature.

  • Polarized primordial gravitational waves in spatial covariant gravities

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The spatial covariant gravities provide a natural way to including odd-order spatial derivative terms into the gravitational action, which breaks the parity symmetry at gravitational sector. A lot of parity-violating scalar-tensor theories can be mapped to the spatial covariant framework by imposing the unitary gauge. This provides us with a general framework for exploring the parity-violating effects in primordial gravitational waves (PGWs). The main purpose of this paper is to investigate the polarization of PGWs in the spatial covariant gravities and their possible observational effects. To this end, we first construct the approximate analytical solution to the mode function of the PGWs during the slow-roll inflation by using the uniform asymptotic approximation. With the approximate solution, we calculate explicitly the power spectrum and the corresponding circular polarization of the PGWs analytically. It is shown that the new contributions to power spectrum from spatial covariant gravities contain two parts, one from the parity-preserving terms and the other from the parity-violating terms. While the parity-preserving terms can only affect the overall amplitudes of PGWs, the parity-violating terms induce nonzero circular polarization of PGWs, i.e., the left-hand and right-hand polarization modes of GWs have different amplitudes. The observational implications of this nonzero circular polarization is also briefly discussed.

  • Two 3-Branes in Randall-Sundrum Setup and Current Acceleration of the Universe

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Five-dimensional spacetimes of two orbifold 3-branes are studied, by assuming that {\em the two 3-branes are spatially homogeneous, isotropic, and independent of time}, following the so-called "bulk-based" approach. The most general form of the metric is obtained, and the corresponding field equations are divided into three groups, one is valid on each of the two 3-branes, and the third is valid in the bulk. The Einstein tensor on the 3-branes is expressed in terms of the discontinuities of the first-order derivatives of the metric coefficients. Thus, once the metric is known in the bulk, the distribution of the Einstein tensor on the two 3-branes is uniquely determined. As applications, we consider two different cases, one is in which the bulk is locally $AdS_{5}$, and the other is where it is vacuum. In some cases, it is shown that the universe is first decelerating and then accelerating. The global structure of the bulk as well as the 3-branes is also studied, and found that in some cases the solutions may represent the collision of two orbifold 3-branes. The applications of the formulas to the studies of the cyclic universe and the cosmological constant problem are also pointed out.

  • Properties of the spherically symmetric polymer black holes

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In this paper we systematically study a five-parameters class of spherically symmetric polymer black/white hole solutions, and find that only three independent combinations are physical and uniquely determine the spacetime properties. After exploring the whole 3-dimensional (3D) phase space, we find that the model has very rich physics, and depending on the choice of these parameters, various possibilities exist, including: (i) spacetimes that have the standard black/white hole structures, that is, spacetimes that are free of spacetime curvature singularities and possess two asymptotically flat regions, which are connected by a transition surface (throat) with a finite and non-zero geometric radius. The black/white hole masses measured by observers in the two asymptotically flat regions are all positive, and the surface gravity of the black (white) hole is positive (negative). (ii) Spacetimes that have wormhole-like structures, in which the two masses are all positive, but no horizons exist.(iii) Spacetimes that still possess curvature singularities, which can be either hidden inside trapped regions or naked. However, such spacetimes correspond to only some limit cases, and the necessary (but not sufficient) condition is that at least one of the two "polymerization" parameters vanishes. In addition, even for solar mass black/white holes, quantum gravitational effects can be still very large at the black/white hole horizons, again depending on the choice of the parameters.